Description Dictionary Super classes Methods References See Also Examples
Regression model-based recursive partitioning.
Calls partykit::mob()
from package partykit.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
1 2 | mlr_learners$get("regr.mob")
lrn("regr.mob")
|
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrMob
new()
Creates a new instance of this R6 class.
LearnerRegrMob$new()
clone()
The objects of this class are cloneable with this method.
LearnerRegrMob$clone(deep = FALSE)
deep
Whether to make a deep clone.
mlr3learners.partykitpartykit1 mlr3learners.partykitpartykit2 mlr3learners.partykitpartykit3
Dictionary of Learners: mlr3::mlr_learners
1 2 3 4 5 6 7 | if (requireNamespace("partykit")) {
learner = mlr3::lrn("regr.mob")
print(learner)
# available parameters:
learner$param_set$ids()
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.