luz_metric_binary_accuracy_with_logits | R Documentation |
Computes accuracy for binary classification problems where the model
return logits. Commonly used together with torch::nn_bce_with_logits_loss()
.
luz_metric_binary_accuracy_with_logits(threshold = 0.5)
threshold |
value used to classifiy observations between 0 and 1. |
Probabilities are generated using torch::nnf_sigmoid()
and threshold
is used to
classify between 0 or 1.
Returns new luz metric.
Other luz_metrics:
luz_metric_accuracy()
,
luz_metric_binary_accuracy()
,
luz_metric_binary_auroc()
,
luz_metric_mae()
,
luz_metric_mse()
,
luz_metric_multiclass_auroc()
,
luz_metric_rmse()
,
luz_metric()
if (torch::torch_is_installed()) {
library(torch)
metric <- luz_metric_binary_accuracy_with_logits(threshold = 0.5)
metric <- metric$new()
metric$update(torch_randn(100), torch::torch_randint(0, 1, size = 100))
metric$compute()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.