lmn_prior | R Documentation |
The conjugate prior for LMN models is the Matrix-Normal Inverse-Wishart (MNIW) distribution. This convenience function converts a partial MNIW prior specification into a full one.
lmn_prior(p, q, Lambda, Omega, Psi, nu)
p |
Integer specifying row dimension of |
q |
Integer specifying the dimension of |
Lambda |
Mean parameter for
|
Omega |
Row-wise precision parameter for
|
Psi |
Scale parameter for
|
nu |
Degrees-of-freedom parameter for |
The Matrix-Normal Inverse-Wishart (MNIW) distribution (B, Σ) ~ MNIW(Λ, Ω, Ψ, ν) on random matrices X_(p x q) and symmetric positive-definite Σ_(q x q) is defined as
Σ ~ Inverse-Wishart(Ψ, ν)
B | Σ ~ Matrix-Normal(Λ, Ω^{-1}, Σ),
where the Matrix-Normal distribution is defined in lmn_suff()
.
A list with elements Lambda
, Omega
, Psi
, nu
with the proper dimensions specified above, except possibly Omega = NA
or nu = NA
(see Details).
# problem dimensions p <- 2 q <- 4 # default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2) lmn_prior(p, q) # pi(Sigma) ~ |Sigma|^(-(q+1)/2) # Beta | Sigma ~ Matrix-Normal(0, I, Sigma) lmn_prior(p, q, Lambda = 0, Omega = 1) # Sigma = diag(q) # Beta ~ Matrix-Normal(0, I, Sigma = diag(q)) lmn_prior(p, q, Lambda = 0, Omega = 1, nu = NA)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.