The goal of claimr is to streamline claim audits
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("mncube/claimr")
#Load claimr
library(claimr)
#Generate sampling frame with an index id from 1 to N
df_sample_frame_num <- data.frame("sample_frame_sequence_id" = 1:1000,
"score" = rnorm(1000))
#Take a simple random sample from the sampling frame
#And return the output (sample, sample frame, spares) and input in lists
score_audit_num <- rs_singlestage(df = df_sample_frame_num,
seed_number = 100,
audit_review = "Score Audit",
quantity_to_generate = 100,
quantity_of_spares = 3,
frame_low = 1,
frame_high = 1000)
#View some of the samples
head(score_audit_num$output$sample)
#> sample_frame_sequence_id score random_numbers
#> 182 182 -0.2216545 1
#> 323 323 0.5524901 2
#> 962 962 -0.4437616 3
#> 397 397 0.1938254 4
#> 987 987 0.3090879 5
#> 601 601 0.5237141 6
#View some of the sampling frame
head(score_audit_num$output$sample_frame)
#> sample_frame_sequence_id score random_numbers
#> 182 182 -0.2216545 1
#> 323 323 0.5524901 2
#> 962 962 -0.4437616 3
#> 397 397 0.1938254 4
#> 987 987 0.3090879 5
#> 601 601 0.5237141 6
#View some of the spares
head(score_audit_num$output$spares)
#> sample_frame_sequence_id score random_numbers
#> 830 830 -0.90058222 101
#> 436 436 0.03977434 102
#> 684 684 1.13626413 103
#Compute the relative bias
relative_bias(score_audit_num, score)
#> [1] 0.6523302
#Get info
uva_info <- gi_unrestricted_variable_appraisals(samp_obj = score_audit_num,
data_file_format = c("Audited Values"),
audited_values = score,
sample_item_number = sample_frame_sequence_id)
#Look at the data_file
uva_info$audit_review
#> [1] "Score Audit"
uva_info$frame_size
#> [1] 1000
uva_info$sample_size
#> [1] 100
uva_info$data_file_format
#> [1] "Audited Values"
head(uva_info$data_file)
#> sample_item_number audited_values
#> 1 182 -0.2216545
#> 2 323 0.5524901
#> 3 962 -0.4437616
#> 4 397 0.1938254
#> 5 987 0.3090879
#> 6 601 0.5237141
#Export data file needed to process "Audited Values" Unrestricted Variable Appraisals in RAT-STATS
rs_uva <- uva_info$data_file
#write.table(rs_uva, sep=",", col.names=FALSE)
#In this example let each data frame represents a score sheet (first_set) with
#10 scores (second_set) on each sheet
#Create three separate score sheets
df1 <- data.frame(page = c(1),
score = rnorm(10, 7,2),
item = 1:10)
df2 <- data.frame(page = c(2),
score = rnorm(10, 6, 1.5),
item = 1:10)
df3 <- data.frame(page = c(3),
score = rnorm(10, 8, 0.5),
item = 1:10)
#Combine the score sheets
df_combined <- rbind(df1, df2, df3)
#Randomly pull observations from the combined score sheet
combined_out <- rs_setsoftwo(df = df_combined,
first_set = page,
second_set = item,
seed_number = NA,
audit_review = "",
quantity_to_generate = 10,
quantity_of_spares = 2,
first_set_low = 1,
first_set_high = 3,
second_set_low = 1,
second_set_high = 10)
#Get head of sample
head(combined_out$output$sample)
#> page score item order
#> 6 1 7.374505 6 9
#> 10 1 8.781231 10 5
#> 11 2 3.784050 1 7
#> 12 2 9.013616 2 4
#> 13 2 7.357762 3 8
#> 14 2 6.944575 4 6
#Get the mean of the sample
mean(unlist(combined_out$output$sample))
#> [1] 4.961096
#In this example let each data frame represents a pre-test or post-test (first_set) and
#a score sheet (second_set) with 10 scores (third_set) on each sheet
#Create six separate data frames
df1_pre <- data.frame(time = 1,
page = c(1),
score = rnorm(10, 7,2),
item = 1:10)
df2_pre <- data.frame(time = 1,
page = c(2),
score = rnorm(10, 6, 1.5),
item = 1:10)
df3_pre <- data.frame(time = 1,
page = c(3),
score = rnorm(10, 8, 0.5),
item = 1:10)
df1_post <- data.frame(time = 2,
page = c(1),
score = rnorm(10, 7,2),
item = 1:10)
df2_post <- data.frame(time = 2,
page = c(2),
score = rnorm(10, 6, 1.5),
item = 1:10)
df3_post <- data.frame(time = 2,
page = c(3),
score = rnorm(10, 8, 0.5),
item = 1:10)
#Combine the data frames
df_combined <- rbind(df1_pre, df2_pre, df3_pre,
df1_post, df2_post, df3_post)
#Randomly pull observations from df_combined
combined_out <- rs_setsofthree(df = df_combined,
first_set = time,
second_set = page,
third_set = item,
seed_number = NA,
audit_review = "",
quantity_to_generate = 10,
quantity_of_spares = 2,
first_set_low = 1,
first_set_high = 2,
second_set_low = 1,
second_set_high = 3,
third_set_low = 1,
third_set_high = 10)
#Get head of sample
head(combined_out$output$sample, 10)
#> time page score item order
#> 11 1 2 5.395469 1 4
#> 21 1 3 7.548854 1 6
#> 24 1 3 8.515617 4 5
#> 28 1 3 7.855659 8 2
#> 29 1 3 8.724455 9 3
#> 30 1 3 7.073804 10 1
#> 33 2 1 9.184083 3 9
#> 34 2 1 9.684856 4 8
#> 43 2 2 5.825793 3 7
#> 52 2 3 7.818014 2 10
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.