network.plot | R Documentation |
This function plots a network of SNPs with potential multi-SNP effects.
network.plot( graphical.score.list, preprocessed.list, n.top.scoring.pairs = NULL, node.shape = "circle", repulse.rad = 1000, node.size = 25, graph.area = 100, vertex.label.cex = 0.5, edge.width.cex = 12, plot = TRUE, edge.color.ramp = c("lightblue", "blue"), node.color.ramp = c("white", "red"), plot.legend = TRUE, high.ld.threshold = 0.1, plot.margins = c(2, 1, 2, 1), legend.title.cex = 1.75, legend.axis.cex = 1.75, ... )
graphical.score.list |
The list returned by function
|
preprocessed.list |
The initial list produced by function
|
n.top.scoring.pairs |
An integer indicating the number of top scoring SNP-pairs to plot. Defaults to, NULL, which plots all pairs. For large networks, plotting a subset of the top scoring pairs can improve the appearance of the graph. |
node.shape |
The desired node shape. See
|
repulse.rad |
A scalar affecting the graph shape. Decrease to reduce overlapping nodes, increase to move nodes closer together. |
node.size |
A scalar affecting the size of the graph nodes. Increase to increase size. |
graph.area |
A scalar affecting the size of the graph area. Increase to increase graph area. |
vertex.label.cex |
A scalar controlling the size of the vertex label. Increase to increase size. |
edge.width.cex |
A scalar controlling the width of the graph edges. Increase to make edges wider. |
plot |
A logical indicating whether the network should be plotted. If set to false, this function will return an igraph object to be used for manual plotting. |
edge.color.ramp |
A character vector of colors. The coloring of the
network edges will be shown on a gradient, with the lower scoring edge
weights closer to the first color specified in |
node.color.ramp |
A character vector of colors. The coloring of the
network nodes will be shown on a gradient, with the lower scoring nodes
closer to the first color specified in |
plot.legend |
A boolean indicating whether a legend should be plotted. Defaults to TRUE. |
high.ld.threshold |
A numeric value between 0 and 1, indicating the r^2
threshold in complements (or unaffected siblings)
above which a pair of SNPs in the same LD block
(as specified in |
plot.margins |
A vector of length 4 passed to |
legend.title.cex |
A numeric value controlling the size of the legend titles. Defaults to 1.75. Increase to increase font size, decrease to decrease font size. |
legend.axis.cex |
A numeric value controlling the size of the legend axis labels. Defaults to 1.75. Increase to increase font size, decrease to decrease font size. |
... |
Additional arguments to be passed to |
An igraph object, if plot
is set to FALSE.
data(case) data(dad) data(mom) case <- as.matrix(case) dad <- as.matrix(dad) mom <- as.matrix(mom) data(snp.annotations) set.seed(1400) # preprocess data target.snps <- c(1:3, 30:32, 60:62, 85) pp.list <- preprocess.genetic.data(case[, target.snps], father.genetic.data = dad[ , target.snps], mother.genetic.data = mom[ , target.snps], ld.block.vec = c(3, 3, 3, 1)) ## run GA for observed data #observed data chromosome size 2 run.gadgets(pp.list, n.chromosomes = 5, chromosome.size = 2, results.dir = 'tmp_2', cluster.type = 'interactive', registryargs = list(file.dir = 'tmp_reg', seed = 1500), generations = 2, n.islands = 2, island.cluster.size = 1, n.migrations = 0) combined.res2 <- combine.islands('tmp_2', snp.annotations[ target.snps, ], pp.list, 2) unlink('tmp_reg', recursive = TRUE) #observed data chromosome size 3 run.gadgets(pp.list, n.chromosomes = 5, chromosome.size = 3, results.dir = 'tmp_3', cluster.type = 'interactive', registryargs = list(file.dir = 'tmp_reg', seed = 1500), generations = 2, n.islands = 2, island.cluster.size = 1, n.migrations = 0) combined.res3 <- combine.islands('tmp_3', snp.annotations[ target.snps, ], pp.list, 2) unlink('tmp_reg', recursive = TRUE) ## create list of results final.results <- list(combined.res2[1:3, ], combined.res3[1:3, ]) ## compute edge scores set.seed(20) graphical.list <- compute.graphical.scores(final.results, pp.list, pval.thresh = 0.5) ## plot set.seed(10) network.plot(graphical.list, pp.list) lapply(c("tmp_2", "tmp_3"), unlink, recursive = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.