anyMissingLevels<-function(yname, cat.vars, dataset){
##############################################################
#This function determines whether any level of a categorical
#variable in the mixture model has entirely missing metabolite
#values.
#
#Args:
# yname: A character string corresponding to the metabolite column
# name.
# cat.vars: a character vector of the names of categorical
# variables in the mixture model
# dataset: a data frame containing metabolite levels and
# categorical predictors
#
#Returns:
# A logical vector indicating whether each categorical variable
# has at least one level with entirely missing metabolite data
####################################################################
#first, start by removing rows that have all missing outcome values
yname.vec<-dataset[ , yname]
subset.data<-dataset[!is.na(yname.vec), cat.vars, drop=FALSE]
#now, for each level of cat vars, determine whether there were any levels with entirely missing outcomes
missing.levels<-sapply(cat.vars, function(cat.varname){
cat.var.levels<-unique(subset.data[ ,cat.varname])
original.cat.var.levels<-unique(dataset[ ,cat.varname])
if (length(cat.var.levels)==length(original.cat.var.levels)){
FALSE
} else {
TRUE
}
})
return(missing.levels)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.