Xi_put_price_concave: Delta hedging for modified european put option

View source: R/Xi_put_price_concave.R

Xi_put_price_concaveR Documentation

Delta hedging for modified european put option

Description

The Xi_put_price_concave function takes parameters from Black-Scholes model and returns a number of stock needed to fully hedge modified european put option.

Usage

Xi_put_price_concave(asset, strike, rate, vol, drift, p, time, End_Time, L, L2 = NA)

Arguments

asset

a numeric vector of asset prices.

strike

numeric value, strike price for call or put option.

rate

numeric value, risk free rate in the model, r >= 0.

vol

numeric value, volatility of the model, vol > 0.

drift

numeric value, drift of the model.

p

numeric positive value, power of the loss function, p < 1.

time

a numeric vector of actual time, time > 0.

End_Time

end time of the option, End_time >= time.

L

numeric value, determines option payoff, L > 0.

L2

numeric value, determines option payoff, if L2 = NA, but is needed, function finds it with Newton's algorithm.

Value

A numeric vector, number of asset to hedge modification of european put option using concave loss function.

Examples

Xi_put_price_concave(100, 100, 0, 0.5, 0.05, 0.5,  0, 1, 54)
Xi_put_price_concave(c(100, 120), 100, 0, 0.3, 0.05, 0.5, 0, 1, 90)
Xi_put_price_concave(c(100, 120), 100, 0, 0.3, 0.05, 0.5, c(0, 0.5), 1, 30)




mociepa/ShortfallRiskHedging documentation built on Sept. 30, 2022, 6:43 p.m.