#' @importFrom graphics abline legend matplot plot par text
#' @importFrom stats anova approx dist lm p.adjust predict binomial glm model.matrix model.response
#' @import gglasso MASS Matrix fastcluster FactoMineR parallelDist
#'
#' @title MLGL
#' @docType package
#' @aliases MLGL-package
#' @name MLGL-package
#' @description
#' This package presents a method combining Hierarchical Clustering and Group-lasso. Usually, a single partition of the
#' covariates is used in the group-lasso.
#' Here, we provide several partitions from the hierarchical tree.
#'
#' A post-treatment method based on statistical test (with FWER and FDR control) for selecting the regularization parameter
#' and the optimal group for this value is provided.
#' This method can be applied for the classical group-lasso and our method.
#'
#'
#' @details
#' The \link{MLGL} function performs the hierarchical clustering and the group-lasso. The post-treatment method can be
#' performed with \link{hierarchicalFWER} and \link{selFWER} functions.
#' The whole process can be run with the \link{fullProcess} function.
#'
#'
#' @author Quentin Grimonprez
#'
#' @references Grimonprez Q, Blanck S, Celisse A, Marot G (2023). "MLGL: An R Package Implementing Correlated Variable
#' Selection by Hierarchical Clustering and Group-Lasso." Journal of Statistical Software, 106(3), 1-33.
#' doi:10.18637/jss.v106.i03.
#'
#' @examples
#' # Simulate gaussian data with block-diagonal variance matrix containing 12 blocks of size 5
#' X <- simuBlockGaussian(50, 12, 5, 0.7)
#' # Generate a response variable
#' y <- X[, c(2, 7, 12)] %*% c(2, 2, -2) + rnorm(50, 0, 0.5)
#' # Apply MLGL method
#' res <- MLGL(X, y)
#' @seealso \link{MLGL}, \link{cv.MLGL}, \link{fullProcess}, \link{hierarchicalFWER}
#'
#' @keywords package
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.