The goal of otmR is to …
You can install the released version of otmR from CRAN with:
install.packages("otmR") # not available!
And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("momoldo/otmR")
This is a basic example which shows you how to solve a common problem:
library(tidyverse)
#> ─ Attaching packages ──────────────────── tidyverse 1.3.0 ─
#> ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
#> ✓ tibble 3.1.0 ✓ dplyr 1.0.5
#> ✓ tidyr 1.1.3 ✓ stringr 1.4.0
#> ✓ readr 1.4.0 ✓ forcats 0.5.1
#> ─ Conflicts ───────────────────── tidyverse_conflicts() ─
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
library(otmR)
#> Loading required package: e1071
#> Loading required package: kableExtra
#>
#> Attaching package: 'kableExtra'
#> The following object is masked from 'package:dplyr':
#>
#> group_rows
#> Loading required package: readxl
## basic example code
iris %>% # data.frame
select(Sepal.Length:Petal.Width) %>% # variable selected
otBasicStats() %>% # compute statistics
otPrint() # print result
Result of BasicStats
Size
Mean
Median
SD
Skewness
Kurtosis
Sepal.Length
150
5.843
5.80
0.828
0.315
-0.552
Sepal.Width
150
3.057
3.00
0.436
0.319
0.228
Petal.Length
150
3.758
4.35
1.765
-0.275
-1.402
Petal.Width
150
1.199
1.30
0.762
-0.103
-1.341
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.