evaBin: Evaluation of binary classifiers

Description Usage Arguments Value Examples

View source: R/Evaluation_of_binary_classifiers.R

Description

evaBin returns different measures for the performance of binary classifiers.

Usage

1
2
evaBin(p = NULL, n = NULL, tp = NULL, tn = NULL, fp = NULL,
  fn = NULL, s = NULL, s.est = NULL)

Arguments

p

Numeric, the number of positives.

n

Numeric, the number of negatives.

tp

Numeric, the number of true positives.

tn

Numeric, the number of true negatives.

fp

Numeric, the number of false positives.

fn

Numeric, the number of false negatives.

s

Numeric, true vector with values TRUE and FALSE or 1s and 0s.

s.est

Numeric, extimated vector with values TRUE and FALSE or 1s and 0s.

Value

Returns a list with the following measures:

True positive (TP)
False positive (FP)
True negative (TN)
False negative (FN)
Precision
F1-Score (F1)
Accuracy (ACC)
Balanced accuracy (BACC)
Matthews correlation coefficient(MCC)
True postive rate (TPR)
True negative rate (TNR)
False positive rate (FPR)
False negative rate (FNR)
False desovery rate (FDR)

Examples

1
evaBin(7, 13, 2, 10)

moritz-hanke/LittleHelpers documentation built on May 3, 2019, 4:07 p.m.