Description Usage Arguments Value Examples
View source: R/Evaluation_of_binary_classifiers.R
evaBin
returns different measures for the performance of binary classifiers.
1 2 |
p |
Numeric, the number of positives. |
n |
Numeric, the number of negatives. |
tp |
Numeric, the number of true positives. |
tn |
Numeric, the number of true negatives. |
fp |
Numeric, the number of false positives. |
fn |
Numeric, the number of false negatives. |
s |
Numeric, true vector with values |
s.est |
Numeric, extimated vector with values |
Returns a list with the following measures:
True positive (TP) |
|
False positive (FP) |
|
True negative (TN) |
|
False negative (FN) |
|
Precision |
|
F1-Score (F1) |
|
Accuracy (ACC) |
|
Balanced accuracy (BACC) |
|
Matthews correlation coefficient(MCC) |
|
True postive rate (TPR) |
|
True negative rate (TNR) |
|
False positive rate (FPR) |
|
False negative rate (FNR) |
|
False desovery rate (FDR) |
1 | evaBin(7, 13, 2, 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.