dnonpar | R Documentation |
The probability density function of a mixture of B-splines for a specified observation vector, a specified state and a specified model's parameters
dnonpar(x, j, model, control = list(K = 5))
x |
an observation vector or matrix |
j |
a specified state between 1 to nstate |
model |
a hhsmmspec model |
control |
the parameters to control the density function.
The simillar name is chosen with that of |
the probability density function value
Morteza Amini, morteza.amini@ut.ac.ir, Reza Salehian, reza.salehian@ut.ac.ir
J <- 3 initial <- c(1, 0, 0) semi <- c(FALSE, TRUE, FALSE) P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J, byrow = TRUE) par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)), sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)), mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5))) sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma") model <- hhsmmspec(init = initial, transition = P, parms.emis = par, dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi) train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234, remission = rmixmvnorm) clus = initial_cluster(train, nstate = 3, nmix = NULL, ltr = FALSE, final.absorb = FALSE, verbose = TRUE) semi <- c(FALSE, TRUE, FALSE) initmodel = initialize_model(clus = clus, mstep = nonpar_mstep, sojourn = "gamma", M = max(train$N), semi = semi) p = dnonpar(train$x, 1, initmodel)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.