View source: R/weight_calculation.R
match_prior_info_centrality | R Documentation |
Different from match_prior_info, the match_prior_info_centrality calculates each interactions based on the true gene sets.
match_prior_info_centrality( net, human_whole, add_option = "none", report_option = TRUE, w_option = "deg", direct_option = FALSE, mode_option = "all" )
net |
dataframe the gmt file from collections of MSigDB, broad institute. each line represents a pathway.please read in with read.csv with header=FALSE and stringAsFactors = FALSE. |
human_whole |
the 2-column matrix with each line representing the connection from gene in column 1 to gene in column 2 |
add_option |
defines the method of adding up missing values. It can be "none", "mean" or "median". No actions for adding up missing values if "none". |
report_option |
if TRUE, report current procedures of the path, which is the proportion of sets completed the matching steps. |
w_option |
the kind of centralities. |
direct_option |
if it is true, the network will be calculated as directed pathways, parameter especially for pagerank |
mode_option |
parameters for centrality calculation, "out" for out-degree, "in" for in-degree or "all" or "total" for the sum of the two. |
a dataframe with the same format as net,which is the gmt files
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–1740. https://doi.org/10.1093/bioinformatics/btr260
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab. Retrieved from http://ilpubs.stanford.edu:8090/422
White, S., & Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 266–275). New York, NY, USA: ACM. https://doi.org/10.1145/956750.956782
Chatr-aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K., … Tyers, M. (2017). The BioGRID interaction database: 2017 update. Nucleic Acids Research, 45(Database issue), D369–D379. https://doi.org/10.1093/nar/gkw1102
igraph
which this function wraps
net=net.h.all.v6.1.entrez #from MSigDB (http://software.broadinstitute.org/gsea/msigdb): "h.all.v6.1.entrez.gmt" human_whole=human_whole_biogird_3.4.147 #from BioGRID(https://thebiogrid.org/): "BIOGRID-ORGANISM-Homo_sapiens-3.4.147.tab2.txt" human_whole=as.matrix(human_whole[,c(2,3,8,9,10,11)]) human_whole=unique(human_whole) human_whole=as.matrix(human_whole[order(human_whole[,2]),]) human_whole=as.matrix(human_whole[order(human_whole[,1]),]) human_whole[,1]=as.numeric(human_whole[,1]) human_whole[,2]=as.numeric(human_whole[,2]) human_whole=human_whole[,1:2] res=match_prior_info_centrality(net,human_whole,add_option="none", report_option=TRUE,w_option="pagerank",direct_option=TRUE,mode_option="all")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.