StatComp18001 is a simple R package including three functions, namely, generateBetaRandomVariable (generate beta distribution samples using R), giniRatioComputing (Computing Gini ratio using R) and generateCauthyMetropolisHastings (Generate cauthy distribution with Metropolis Hastings method).
The source R code for generateBetaRandomVariable is as follows:
generateBetaRandomVariable <- function(a,b) { n <- 1e3 j<-k<-0 y <- numeric(n) while (k < n) { u <- runif(1) j <- j + 1 x <- runif(1) #random variate from g if (x^(a-1) * (1-x)^(b-1) > u) { #we accept x k <- k + 1 y[k] <- x } } return(y) }
The above code is a function to generate a random sample of size n from the Beta(a,b) distribution by the acceptance-rejection method.
The source R code for giniRatioComputing is as follows:
giniRatioComputing = function(n,x,mu){ x=sort(x) gini_ratio=0 a=0 for (i in 1:n) { if(mu==FALSE){ mu=mean(x) } a=a+(2*i-n-1)*x[i] } gini_ratio=a/(n^2*mu) return(gini_ratio) }
The above code is a function to generate a random sample to calculate Gini Ratio statistics.
The source R code for generateCauthyMetropolisHastings is as follows:
generateCauthyMetropolisHastings = function(n, sigma, x0, N) { x <- numeric(N) x[1] <- x0 u <- runif(N) for (i in 2:N) { y <- rnorm(1, x[i-1], sigma) if (u[i] <= ( (dt(y, n)*dnorm(x[i-1],y,sigma))/(dt(x[i-1], n)*dnorm(y,x[i-1],n)))){ x[i] <- y }else { x[i] <- x[i-1] } } return(x)
The above code is a function to generate a random sample from Cauthy distribution with metropolis Hastings method.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.