title: "Change of Evidence Vignette t-Test" output: html_document: keep_md: true self_contained: true toc: true
set.seed(9878)
exp=rbinom(100,20,0.52)
con=rbinom(100,20,0.5)
summary(exp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.00 9.00 11.00 10.54 12.00 15.00
summary(con)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.00 8.75 10.00 9.96 12.00 15.00
df <- data.frame(condition = c(rep("exp", 100), rep("con", 100)),
value = c(exp, con))
library(changeofevidence)
# Undirectional one-sample t-tests with broad prior
bf.exp <- bfttest(exp, mu = 10, alternative = "two.sided", prior.loc = 0, prior.r = 0.707)
## One Sample test (N = 100)
## Calculating Sequential Bayes Factors...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 20%
|
|=============== | 21%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Final Bayes Factor: 2.640455 (t=2.59456; p=0.01090879)
print(bf.exp)
##
## Sequential Bayesian Testing
## --------------------------------
## Test type: one-sample
## Sample size: 100
## Final Bayes Factor: BF10=2.64; BF01=0.379
## Parameter prior: Cauchy(0, 0.707)
## Directionality of H1 analysis prior: two.sided
## Orthodox Test: t-value=2.595; p=0.011
##
# Use exact=FALSE for a quicker test that doers not calculate every single BF
bf.con <- bfttest(con, mu = 10, alternative = "two.sided", prior.loc = 0, prior.r = 0.707, exact=FALSE)
## One Sample test (N = 100)
## Calculating Sequential Bayes Factors...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 20%
|
|=============== | 21%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Final Bayes Factor: 0.1123492 (t=-0.1732313; p=0.8628233)
print(bf.con)
##
## Sequential Bayesian Testing
## --------------------------------
## Test type: one-sample
## Sample size: 100
## Final Bayes Factor: BF10=0.112; BF01=8.901
## Parameter prior: Cauchy(0, 0.707)
## Directionality of H1 analysis prior: two.sided
## Orthodox Test: t-value=-0.173; p=0.863
##
# only the last 5 data points
bfttest(con, mu = 10, alternative = "two.sided", prior.loc = 0, prior.r = 0.707, nstart = length(con)-5)
## One Sample test (N = 100)
## Calculating Sequential Bayes Factors...
##
|
| | 0%
|
|============== | 20%
|
|============================ | 40%
|
|========================================== | 60%
|
|======================================================== | 80%
|
|======================================================================| 100%
## Final Bayes Factor: 0.1123492 (t=-0.1732313; p=0.8628233)
##
## Sequential Bayesian Testing
## --------------------------------
## Test type: one-sample
## Sample size: 100
## Final Bayes Factor: BF10=0.112; BF01=8.901
## Parameter prior: Cauchy(0, 0.707)
## Directionality of H1 analysis prior: two.sided
## Orthodox Test: t-value=-0.173; p=0.863
##
# Directional paired samples t-test with narrow prior
bf.paired <- bfttest(exp, con, alternative = "greater", prior.loc = 0, prior.r = 0.1)
## Paired Samples test (N = 100)
## Calculating Sequential Bayes Factors...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|========= | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============== | 19%
|
|============== | 20%
|
|=============== | 21%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Final Bayes Factor: 2.960334 (t=1.974355; p=0.02556375)
print(bf.paired)
##
## Sequential Bayesian Testing
## --------------------------------
## Test type: paired
## Sample size: 100
## Final Bayes Factor: BF10=2.96; BF01=0.338
## Parameter prior: Cauchy(0, 0.1)
## Directionality of H1 analysis prior: greater
## Orthodox Test: t-value=1.974; p=0.026
##
# Independent samples t-test with informed prior
bf.between <- bfttest(value ~ condition, data = df, alternative = "less", prior.loc = 0.1, prior.r = 0.1)
## Independent Samples test (N = 200 [100 + 100])
## Calculating Sequential Bayes Factors...
## First observation with two groups found at N = 101
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|================ | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|===================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|============================ | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================= | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|=================================== | 49%
|
|=================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|===================================== | 54%
|
|====================================== | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Final Bayes Factor: 2.361634 (t=-1.865788; p=0.03177503)
print(bf.between)
##
## Sequential Bayesian Testing
## --------------------------------
## Test type: independent
## Sample size: 100, 100
## Final Bayes Factor: BF10=2.362; BF01=0.423
## Parameter prior: Cauchy(0.1, 0.1)
## Directionality of H1 analysis prior: less
## Orthodox Test: t-value=-1.866; p=0.032
##
# Plot seqbf object
plot(bf.paired)
# Plot multiple BFs
plotbf(list(exp=bf.exp$BF, con=bf.con$BF))
bf.paired.robust <- bfRobustness(bf.paired)
## Highest BF = 5.18 with prior: Cauchy(0.2, 0.05)
print(bf.paired.robust)
##
## Prior Robustness Analysis
## --------------------------------
## Test type: paired
## Sample size: 100
## Tested priors:
## -- distribution: Cauchy
## -- location: 0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1
## -- scale: 0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1
## Highest Bayes Factor: 5.181 with prior: Cauchy(0.2, 0.05)
## Lowest Bayes Factor: 0.045 with prior: Cauchy(1, 0.05)
## Median Bayes Factor: 0.894
##
plot(bf.paired.robust)
# Indicate the amount of trials of one experimental run (e.g. 100 subjects * 20 trials)
# Specify the same test parameters as the test(s) you want to compare to (in this case the one-sample t-tests.)
sims <- simcreate(100*20, n.sims = 100, mean.scores = 10, use.files = F, alternative = "two.sided", prior.loc = 0, prior.r = 0.707)
## Lade nötiges Paket: foreach
## Lade nötiges Paket: doParallel
## Lade nötiges Paket: iterators
## Lade nötiges Paket: parallel
plot(bf.paired, sims.df = sims)
## [1] "Depending on the amount of simulations to be drawn, this might take a while!"
plotbf(list(exp=bf.exp$BF, con=bf.con$BF), sims.df = sims)
## [1] "Depending on the amount of simulations to be drawn, this might take a while!"
r.exp.maxbf <- maxbf(bf.exp, sims.df = sims)
## >> MAXIMUM BF <<
## Highest BF: 11.05546 ( at N = 89 )
## Sims with this or a higher BFs: 3 %
r.con.maxbf <- maxbf(bf.con, sims.df = sims)
## >> MAXIMUM BF <<
## Highest BF: 1.677659 ( at N = 24 )
## Sims with this or a higher BFs: 24 %
r.exp.nrg <- energybf(bf.exp, sims.df = sims)
## >> BF ENERGY <<
## Calculating Energy of sims...
##
## Energy of BF of data: 106.5228
## Sims Energy: M = -56.10375 , SD = 64.66779
## Sims with this or higher Energy: 2 %
r.con.nrg <- energybf(bf.con, sims.df = sims)
## >> BF ENERGY <<
## Calculating Energy of sims...
##
## Energy of BF of data: -67.026
## Sims Energy: M = -56.10375 , SD = 64.66779
## Sims with this or higher Energy: 32 %
# Create Fast Fourier Transforms of Sequential BFs
fft.exp <- fftcreate(bf.exp)
fft.con <- fftcreate(bf.con)
# Compare amplitude sums with simulations
r.exp.fft <- ffttest(fft.exp, sims.df = sims)
## >> FREQUENCY ANALYSIS <<
##
## Number of Frequencies: 50
## Sum of Amplitudes: 8.090708
## Sims Amplitude Sums: M = 1.774112 SD = 2.982413
## Simulations with this or higher amplitude sum: 3 %
r.con.fft <- ffttest(fft.con, sims.df = sims)
## >> FREQUENCY ANALYSIS <<
##
## Number of Frequencies: 50
## Sum of Amplitudes: 1.317572
## Sims Amplitude Sums: M = 1.774112 SD = 2.982413
## Simulations with this or higher amplitude sum: 26 %
# Plot FFTs
# Use parameter "coordy" to ensure a comparable coordinate system
plotfft(fft.exp, sims.df = sims)
plotfft(fft.con, sims.df = sims)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.