#' produces a summary of how many plots have been completed "Eval" and how many plots have been "Rejected
#'
#' @param x type list produced by \code{read_dima()} or a list produced from \code{read_dima()} (if a DIMA list, dima must be set to \code{TRUE}.
#' @param year if you want an identifying column to be added to the resulting tibble add a numeric year.
#' @param dima if \code{TRUE} x is expected to be a DIMA list created from \code{read_dima()}.
eval_stats<-function(x, year = FALSE, dima=FALSE){
if(dima==FALSE){
summary_table<-x$plots%>%
dplyr::filter(stringr::str_detect(PlotKey, "COS01000|TRFO"))%>%
dplyr::count(stratum, EvalStatus, sort=T)%>%
dplyr::filter(EvalStatus!="OverSample" & EvalStatus!="Calibration")%>%
tidyr::pivot_wider(names_from=EvalStatus, values_from=n)%>%
dplyr::mutate_at(vars(Eval, Rejected), replace_na, 0)
}
if(dima){
summary_table<-x$plots%>%
dplyr::select(PlotID)%>%
dplyr::filter(stringr::str_detect(PlotID, "^[A-Z][A-Z]"))%>%
dplyr::mutate(strata=str_extract(PlotID, "^GRSGInt|^[A-Z][A-Z]"))%>%
strata_full_names()%>%
dplyr::count(Strata, sort=TRUE)%>%
dplyr::rename(Eval = n)%>%
dplyr::mutate(Rejected = NA)
}
if(is.numeric(year)){
summary_table<-summary_table%>%
dplyr::mutate(year = year)
}
return(summary_table)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.