x <- 1:50 y <- 50:1 # solution using `base` z <- (y - c(NA, x[1:(length(x)-1)]))/c(NA, NA, y[1:(length(y)-2)]) # solution with tidyverse (much prettier huh!) z <- (y - lag(x, n = 1))/lag(y, n = 2) # solution (be aware of the NA values) my_sol <- sum(z, na.rm = TRUE)
my_answers <- make_random_answers(my_sol) #check_answers(my_answers)
Create a $z_i$ vector according to the following formula where $x_i = 1 ... 50$ and $y_i = 50 ... 1$. What is the sum of the elements of $z_i$? Tip: check out how the dplyr::lag
function works.
$$ z_i=\frac{y_i - x_{i-1}}{y_{i-2}} $$
exams::answerlist(my_answers, markup = "markdown")
extype: schoice
exsolution: r mchoice2string(c(TRUE, FALSE, FALSE, FALSE, FALSE), single = TRUE)
exname: "numeric "
exshuffle: TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.