set.seed(5)

# number of obs
n_row <- 100

# set x as Normal (0, 1)
x <- rnorm(n_row)

# set coefficients
my_alpha <- 1.5
my_beta <- 0.5

# build y
y <- my_alpha + my_beta*x + rnorm(n_row)

library(tidyverse)

my_lm <- lm(formula = y ~ x, data = tibble(x, y))

summary(my_lm)

my_sol <- coef(my_lm)[2]
# none
my_answers <- make_random_answers(my_sol)

Question

Simulate the following linear process in R:

set.seed(5)

# number of obs
n_row <- 100

# set x as Normal (0, 1)
x <- rnorm(n_row)

# set coefficients
my_alpha <- 1.5
my_beta <- 0.5

# build y
y <- my_alpha + my_beta*x + rnorm(n_row)

Now, estimate a linear model where x is the explanatory variable and y is the explained variable. Use the summary function on the estimation return object to get more details about the model. What is the estimated beta value of the simulated data?

exams::answerlist(my_answers, markup = "markdown")

Solution


Meta-information

extype: schoice exsolution: r mchoice2string(c(TRUE, FALSE, FALSE, FALSE, FALSE), single = TRUE) exname: "function 01" exshuffle: TRUE



msperlin/afedR documentation built on Sept. 11, 2022, 9:49 a.m.