set.seed(5) # number of obs n_row <- 100 # set x as Normal (0, 1) x <- rnorm(n_row) # set coefficients my_alpha <- 1.5 my_beta <- 0.5 # build y y <- my_alpha + my_beta*x + rnorm(n_row) library(tidyverse) my_lm <- lm(formula = y ~ x, data = tibble(x, y)) summary(my_lm) library(car) # set test matrix test_matrix <- matrix(c(my_alpha, # alpha test value my_beta)) # beta test value # hypothesis matrix hyp_mat <- matrix(c(1.5, 0, 0 , 0.5), nrow = 2) # do test my_waldtest <- linearHypothesis(my_lm, hypothesis.matrix = hyp_mat, rhs = test_matrix) # print result my_sol <- my_waldtest$F[2]
# none my_answers <- make_random_answers(my_sol)
Using the car
package, test the joint hypothesis that the value of alpha is equal to 1.5 and the value of beta is equal to 0.5. What is the value of the resulting F test?
exams::answerlist(my_answers, markup = "markdown")
extype: schoice
exsolution: r mchoice2string(c(TRUE, FALSE, FALSE, FALSE, FALSE), single = TRUE)
exname: "function 01"
exshuffle: TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.