#' # Writing Research Scripts {#research-scripts}
#'
#' So far we learned how to use R for basic tasks
#'
#' An organized code facilitates sharing and futur
#'
#'
#' ## Stages of Research
#'
#' Unlike other software designs, every research s
#'
#' 1. **Importation of data**: Raw (original) data
#'
#' 2. **Cleaning and structuring the data**: The r
#'
#' 3. **Visual analysis and hypothesis testing**:
#'
#' 4. **Reporting the results**: The final stage o
#'
#' Each of the mentioned steps can be structured i
#'
#' A practical example would be the analysis of a
#'
#' If you are working with multiple files, one sug
#'
#'
#' ## Folder Structure {#directories}
#'
#' A proper folder structure also benefits the rep
#'
#' A suggestion for an effective folder structure
#'
#' /Capital Markets and Inflation/
#' /data/
#' stock_indices.csv
#' inflation_data.csv
#' /figs/
#' SP500_and_inflation.png
#' /tables/
#' Table1_descriptive_table.tex
#' Table2_model_results.tex
#' /R-Fcts/
#' fct_models.R
#' fct_clean_data.R
#' 0-run-it-all.R
#' 1-import-and-clean-data.R
#' 2-run-research.R
#'
#' The research code should also be self-contained
#'
#' The benefits of this directory format are as fo
#'
#' An example for the content of file `0-run-it-al
#'
## ----eval=FALSE, tidy=FALSE-----------------------------------------------------------------------------------------
## # clean up workspace
## rm(list=ls())
##
## # close all figure windows created with x11()
## graphics.off()
##
## # load packages
## library(pkg1)
## library(pkg2)
## library(pkg3)
##
## # change directory
## my_dir <- dirname(rstudioapi::getActiveDocumentContext()$path)
## setwd(my_dir)
##
## # list functions in 'R-Fcts'
## my_R_files <- list.files(path='R-Fcts',
## pattern = '*.R',
## full.names=TRUE)
##
## # Load all functions in R
## sapply(my_R_files, source)
##
## # Import data script
## source('01-import-and-clean-data.R')
##
## # run models and report results
## source('02-run-research.R')
#'
#' This is the first time we use functions `graphi
#'
#' Notice that, assuming all packages are installe
#'
#' Another way of setting up directories in a rese
#'
#' The benefit of this approach is that it is unne
#'
#'
#' ## Important Aspects of a Research Script
#'
#' In this section I'll be making some suggestions
#'
#' Firstly, **know your data!**. I can't stress en
#'
#' - How was the data collected? To what purpose?
#' - How do the available data compare with data u
#' - Is there any possibility of bias within the d
#'
#' Furthermore, you need to remember that the ulti
#'
#' As an example, consider the case of analyzing t
#'
#' The message is clear. **Be very cautious about
#'
#' The second point here is the code. After you fi
#'
#' Remember that analyzing data is your profession
#'
#' - Do the descriptive statistics of the variable
#' - Is there any relationship between the variabl
#' - Do the main findings of the research make sen
#' - Is it possible that a _bug_ in the code has p
#'
#' I'm constantly surprised by how many studies su
#'
#' All of the research work is, to some extent, ba
#'
#' I clarify that it is possible that the results
#'
#'
#' ## Exercises
#'
## ---- echo=FALSE, results='asis'------------------------------------------------------------------------------------
f_in <- list.files('../02-EOCE-Rmd/Chapter03-Research-Scripts/',
full.names = TRUE)
compile_eoc_exercises(f_in, type_doc = my_engine)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.