| ZIP | R Documentation |
The function ZIP defines the zero inflated Poisson distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting
using the function gamlss(). The functions dZIP, pZIP, qZIP and rZIP define the density, distribution function, quantile function
and random generation for the inflated poisson, ZIP(), distribution.
ZIP(mu.link = "log", sigma.link = "logit")
dZIP(x, mu = 5, sigma = 0.1, log = FALSE)
pZIP(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
qZIP(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE)
rZIP(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Let Y=0 with probability \sigma and Y \sim Po(\mu) with probability (1-\sigma) the Y has
a Zero inflated Poisson Distribution given by
f(y)=\sigma +(1-\sigma)e^{-\mu}
if (y=0)
f(y)=(1-\sigma)\frac{e^{-\mu} \mu^y}{y!}
if (y>0)
for y=0,1,... see pp 498-500 of Rigby et al. (2019). The expected values in this parametrization is E(y)=(1-\sigma) \mu.
returns a gamlss.family object which can be used to fit a zero inflated poisson distribution in the gamlss() function.
Mikis Stasinopoulos, Bob Rigby
Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9780429298547")}. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v023.i07")}.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/b21973")}
(see also https://www.gamlss.com/).
gamlss.family, PO, ZIP2
ZIP()# gives information about the default links for the normal distribution
# creating data and plotting them
dat<-rZIP(1000, mu=5, sigma=.1)
r <- barplot(table(dat), col='lightblue')
# library(gamlss)
# fit the distribution
# mod1<-gamlss(dat~1, family=ZIP)# fits a constant for mu and sigma
# fitted(mod1)[1]
# fitted(mod1,"sigma")[1]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.