garmaFit | R Documentation |
This function is for fitting a GARMA model, see Benjamin et al. (2003).
garmaFit(formula = formula(data), order = c(0, 0),
weights = NULL, data,
family = NO(), alpha = 0.1,
phi.start = NULL, theta.start = NULL,
tail = max(order), control = list())
formula |
A formula for linear terms i.e. like in |
order |
|
weights |
prior weighs, they are working like in |
data |
the relevant |
family |
A |
alpha |
This parameter is used in the definition of the link function of the response variable i.e. |
phi.start |
starting values for the AR parameters |
theta.start |
starting values for the MA part |
tail |
how many observation from the tall of the response variable should be suppressed |
control |
control for |
The model is described in Benjamin et al. (2003). The implementation here is more general that it allows all the gamlss.family
distributions to be fitted rather than only for the exponential family which was described in the original paper. Note that in this formulation only the mu can be modelled as ARMA.
It returns a fitted garma
model.
There is no check done whether the fitted model is stationary.
Mikis Stasinopoulos mikis.stasinopoulos@gamlss.org, Bob Rigby and Vlasios Voudouris
Benjamin M. A., Rigby R. A. and Stasinopoulos D.M. (2003) Generalised Autoregressive Moving Average Models. J. Am. Statist. Ass., 98, 214-223.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
gamlss.family
, gamlss
data(polio)
ti <- as.numeric(time(polio))
mo <- as.factor(cycle(polio))
x1 <- 0:167 #Index used in Tutz p197
x2 <- cos(2*pi*x1/12)
x3 <- sin(2*pi*x1/12)
x4 <- cos(2*pi*x1/6)
x5 <- sin(2*pi*x1/6)
# all the data here
da <-data.frame(polio,x1,x2,x3,x4,x5, ti, mo)
rm(ti,mo,x1,x2,x3,x4,x5)
#-------------------------------------------------------------------
# with linear trend
m00 <- garmaFit(polio~x1+x2+x3+x4+x5, data=da, order=c(0,0), family=NBI, tail=3) #
m10 <- garmaFit(polio~x1+x2+x3+x4+x5, data=da, order=c(1,0), family=NBI, tail=3) #
## Not run:
m01 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(0,1), data=da, family=NBI, tail=3)
m20 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(2,0), data=da, family=NBI, tail=3)
m11 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(1,1), data=da, family=NBI, tail=3)
m02 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(0,2), data=da, family=NBI, tail=3)
m30 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(3,0), data=da, family=NBI, tail=3)
m21 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(2,1), data=da, family=NBI, tail=3)
m12 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(1,2), data=da, family=NBI, tail=3)
m03 <- garmaFit(polio~x1+x2+x3+x4+x5, order=c(0,3), data=da, family=NBI, tail=3)
AIC(m00,m10,m01,m20,m11,m02,m30,m21,m12,m03 , k=0)
AIC(m00,m10,m01,m20,m11,m02,m30,m21,m12,m03 , k=log(168))
# without linear trend
n00 <- garmaFit(polio~x2+x3+x4+x5, data=da, order=c(0,0), family=NBI, tail=3) #
n10 <- garmaFit(polio~x2+x3+x4+x5, data=da, order=c(1,0), family=NBI, tail=3) # OK
n01 <- garmaFit(polio~x2+x3+x4+x5, order=c(0,1), data=da, family=NBI, tail=3)
n20 <- garmaFit(polio~x2+x3+x4+x5, order=c(2,0), data=da, family=NBI, tail=3)
n11 <- garmaFit(polio~x2+x3+x4+x5, order=c(1,1), data=da, family=NBI, tail=3)
n02 <- garmaFit(polio~x2+x3+x4+x5, order=c(0,2), data=da, family=NBI, tail=3)
n30 <- garmaFit(polio~x2+x3+x4+x5, order=c(3,0), data=da, family=NBI, tail=3)
n21 <- garmaFit(polio~x2+x3+x4+x5, order=c(2,1), data=da, family=NBI, tail=3)
n12 <- garmaFit(polio~x2+x3+x4+x5, order=c(1,2), data=da, family=NBI, tail=3)
n03 <- garmaFit(polio~x2+x3+x4+x5, order=c(0,3), data=da, family=NBI, tail=3)
AIC(m00,n10,n01,n20,n11,n02,n30,n21,n12, k=0)
AIC(m00,n10,n01,n20,n11,n02,n30,n21,n12, k=log(168))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.