QFitInfer: This function implements the inference for Q-learning...

View source: R/QInference.R

QFitInferR Documentation

This function implements the inference for Q-learning estimation (see reference).

Description

This function implements the inference for Q-learning estimation (see reference).

Usage

QFitInfer(qLearnFit, parallel = TRUE, indexToTest = c(1:8), intercept = TRUE)

Arguments

qLearnFit

returns of QLearnFit

parallel

whether use parallel computing; by default, FALSE.

indexToTest

indicates which coefficients to test. By default, c(1:8)

intercept

includes intercept or not

Value

p-values are the p-value for each coefficients included in indexToTest. (betaAN-1.96*sigmaAN/sqrt(sample size), betaAN+1.96*sigmaAN/sqrt(sample size)) provides the 95% CI for the coefficients.

Author(s)

Muxuan Liang <mliang@fredhutch.org>

References

Muxuan Liang, Young-Geun Choi, Yang Ning, Maureen Smith, Yingqi Zhao (2020). Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score.


muxuanliang/ITRInference documentation built on Aug. 17, 2022, 6:03 p.m.