#' @title Example1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-5)
#' @name Exam1.1
#' @description Exam1.1 is used for inspecting probability distribution and to define a plausible process through
#' linear models and generalized linear models.
#'
#' @author
#' \enumerate{
#' \item Muhammad Yaseen (\email{myaseen208@gmail.com})
#' \item Adeela Munawar (\email{adeela.uaf@gmail.com})
#' }
#'
#' @references
#' \enumerate{
#' \item Stroup, W. W. (2012).
#' \emph{Generalized Linear Mixed Models: Modern Concepts, Methods and Applications}.
#' CRC Press.
#' }
#'
#' @seealso
#' \link{Table1.1}
#'
#' @import parameters
#' @importFrom ggplot2 ggplot
#' @importFrom stats lm summary.lm glm summary.glm cor
#' @importFrom survey svydesign svyglm
#'
#' @examples
#' #-------------------------------------------------------------
#' ## Linear Model and results discussed in Article 1.2.1 after Table1.1
#' #-------------------------------------------------------------
#' data(Table1.1)
#' Exam1.1.lm1 <- lm(formula = y/Nx ~ x, data = Table1.1)
#' summary(Exam1.1.lm1 )
#' library(parameters)
#' model_parameters(Exam1.1.lm1)
#'
#' #-------------------------------------------------------------
#' ## GLM fitting with logit link (family=binomial)
#' #-------------------------------------------------------------
#' Exam1.1.glm1 <-
#' glm(
#' formula = y/Nx ~ x
#' , family = binomial(link = "logit")
#' , data = Table1.1
#' )
#' ## this glm() function gives warning message of non-integer success
#' summary(Exam1.1.glm1)
#' model_parameters(Exam1.1.glm1)
#'
#' #-------------------------------------------------------------
#' ## GLM fitting with logit link (family = Quasibinomial)
#' #-------------------------------------------------------------
#' Exam1.1.glm2 <-
#' glm(
#' formula = y/Nx~x
#' , family = quasibinomial(link = "logit")
#' , data = Table1.1
#' )
#' ## problem of "warning message of non-integer success" is overome by using quasibinomial family
#' summary(Exam1.1.glm2)
#' model_parameters(Exam1.1.glm2)
#'
#' #-------------------------------------------------------------
#' ## GLM fitting with survey package(produces same result as using quasi binomial family in glm)
#' #-------------------------------------------------------------
#' library(survey)
#' design <- svydesign(ids = ~1, data = Table1.1)
#'
#' Exam1.1.svyglm <-
#' svyglm(
#' formula = y/Nx~x
#' , design = design
#' , family = quasibinomial(link = "logit")
#' )
#' summary(Exam1.1.svyglm)
#' model_parameters(Exam1.1.svyglm)
#'
#' #-------------------------------------------------------------
#' ## Figure 1.1
#' #-------------------------------------------------------------
#' Newdata <-
#' data.frame(
#' Table1.1
#' , LM = Exam1.1.lm1$fitted.values
#' , GLM = Exam1.1.glm1$fitted.values
#' , QB = Exam1.1.glm2$fitted.values
#' , SM = Exam1.1.svyglm$fitted.values
#' )
#' #-------------------------------------------------------------
#' ## One Method to plot Figure1.1
#' #-------------------------------------------------------------
#' library(ggplot2)
#'
#' Figure1.1 <-
#' ggplot(
#' data = Newdata
#' , mapping = aes(x = x, y = y/Nx)
#' ) +
#' geom_point (
#' mapping = aes(colour = "black")
#' ) +
#' geom_point (
#' data = Newdata
#' , mapping = aes(x = x, y = LM, colour = "blue"), shape = 2
#' ) +
#' geom_line(
#' data = Newdata
#' , mapping = aes(x = x, y = LM, colour = "blue")
#' ) +
#' geom_point (
#' data = Newdata
#' , mapping = aes(x = x, y = GLM, colour ="red"), shape = 3
#' ) +
#' geom_smooth (
#' data = Newdata
#' , mapping = aes(x = x, y = GLM, colour = "red")
#' , stat = "smooth"
#' ) +
#' theme_bw() +
#' scale_colour_manual (
#' values = c("black", "blue", "red"),
#' labels = c("observed", "LM", "GLM")
#' ) +
#' guides (
#' colour = guide_legend(title = "Plot")
#' ) +
#' labs (
#' title = "Linear Model vs Logistic Model"
#' ) +
#' labs (
#' y = "p"
#' )
#' print(Figure1.1)
#'
#' #-------------------------------------------------------------
#' ## Another way to plot Figure 1.1
#' #-------------------------------------------------------------
#' newdata <-
#' data.frame(
#' P = c(
#' Table1.1$y/Table1.1$Nx
#' , Exam1.1.lm1$fitted.values
#' , Exam1.1.glm1$fitted.values
#' )
#' , X = rep(Table1.1$x, 3)
#' , group = rep(c('Obs','LM','GLM'), each = length(Table1.1$x))
#' )
#'
#' Figure1.1 <-
#' ggplot(
#' data = newdata
#' , mapping = aes(x = X , y = P)
#' ) +
#' geom_point(
#' mapping = aes(x = X , y = P, colour = group , shape=group)
#' ) +
#' geom_smooth(
#' data = subset(x = newdata, group == "LM")
#' , mapping = aes(x=X,y=P)
#' , col = "green"
#' ) +
#' geom_smooth(
#' data = subset(x = newdata, group=="GLM")
#' , mapping = aes(x = X , y = P)
#' , col = "red"
#' ) +
#' theme_bw() +
#' labs(
#' title = "Linear Model vs Logistic Model"
#' )
#' print(Figure1.1)
#'
#' #-------------------------------------------------------------
#' ## Correlation among p and fitted values using Gaussian link
#' #-------------------------------------------------------------
#' (lmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.lm1$fitted.values))
#'
#' #-------------------------------------------------------------
#' ## Correlation among p and fitted values using quasi binomial link
#' #-------------------------------------------------------------
#' (glmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.glm1$fitted.values))
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.