kruskal | R Documentation |
It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.
kruskal(
y,
trt,
alpha = 0.05,
p.adj = c("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"),
group = TRUE,
main = NULL,
console = FALSE
)
y |
response |
trt |
treatment |
alpha |
level signification |
p.adj |
Method for adjusting p values (see p.adjust) |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
For equal or different repetition.
For the adjustment methods, see the
function p.adjusted.
p-adj = "none" is t-student.
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Felipe de Mendiburu
Practical Nonparametrics Statistics. W.J. Conover, 1999
BIB.test
, DAU.test
,
duncan.test
, durbin.test
,
friedman
, HSD.test
, LSD.test
,
Median.test
, PBIB.test
, REGW.test
,
scheffe.test
, SNK.test
,
waerden.test
, waller.test
,
plot.group
library(agricolae)
data(corn)
str(corn)
comparison<-with(corn,kruskal(observation,method,group=TRUE, main="corn"))
comparison<-with(corn,kruskal(observation,method,p.adj="bon",group=FALSE, main="corn"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.