testModelFit: Regression models, reporting overall significance of the...

Description Usage Arguments Details Author(s) See Also Examples

View source: R/testModelFit.R

Description

testModelFit overall significance of the model and interpretation

Usage

1
testModelFit(model)

Arguments

model

object glm or lm type

Details

This test asks whether the model with predictors fits significantly better than a model with just an intercept (i.e., a null model).

The test statistic is the difference between the residual deviance for the model with predictors and the null model. The test statistic is distributed chi-squared with degrees of freedom equal to the differences in degrees of freedom between the current and the null model (i.e., the number of predictor variables in the model).

Reference:

  1. LOGIT REGRESSION | R DATA ANALYSIS EXAMPLES. UCLA: Statistical Consulting Group. from https://stats.idre.ucla.edu/r/dae/logit-regression/ (accessed September 27, 2019)

Author(s)

Myo Minn Oo (Email: dr.myominnoo@gmail.com | Website: https://myominnoo.github.io/)

See Also

fModelOutput

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
## Not run: 
## example from IRDE website:
## https://stats.idre.ucla.edu/r/dae/logit-regression/
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
codebook(mydata)
tab(admit, mydata)
tab(rank, mydata)

mylogit <- glm(admit ~ gre + gpa + factor(rank), data = mydata, family = "binomial")
summary(mylogit)

fModelOutput(mylogit) # generates parameters
testModelFit(mylogit) # test overall significant of the model

## End(Not run)

myominnoo/mStats_beta documentation built on Feb. 29, 2020, 8:17 a.m.