priorsense provides tools for prior diagnostics and sensitivity analysis.
It currently includes functions for performing power-scaling sensitivity analysis on Stan models. This is a way to check how sensitive a posterior is to perturbations of the prior and likelihood and diagnose the cause of sensitivity. For efficient computation, power-scaling sensitivity analysis relies on Pareto smoothed importance sampling (Vehtari et al., 2024) and importance weighted moment matching (Paananen et al., 2021).
Power-scaling sensitivity analysis and priorsense are described in Kallioinen et al. (2023).
Download the stable version from CRAN with:
install.packages("priorsense")
Download the development version from GitHub with:
# install.packages("remotes")
remotes::install_github("n-kall/priorsense", ref = "development")
priorsense works with models created with rstan, cmdstanr or brms, or with draws objects from the posterior package.
Consider a simple univariate model with unknown mu and sigma fit to some
data y (available viaexample_powerscale_model("univariate_normal")
):
data {
int<lower=1> N;
array[N] real y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
// priors
target += normal_lpdf(mu | 0, 1);
target += normal_lpdf(sigma | 0, 2.5);
// likelihood
target += normal_lpdf(y | mu, sigma);
}
generated quantities {
vector[N] log_lik;
real lprior;
// log likelihood
for (n in 1:N) log_lik[n] = normal_lpdf(y[n] | mu, sigma);
// joint log prior
lprior = normal_lpdf(mu | 0, 1) +
normal_lpdf(sigma | 0, 2.5);
We first fit the model using Stan:
library(priorsense)
normal_model <- example_powerscale_model("univariate_normal")
fit <- rstan::stan(
model_code = normal_model$model_code,
data = normal_model$data,
refresh = FALSE,
seed = 123
)
Once fit, sensitivity can be checked as follows:
powerscale_sensitivity(fit)
#> Sensitivity based on cjs_dist:
#> # A tibble: 2 × 4
#> variable prior likelihood diagnosis
#> <chr> <dbl> <dbl> <chr>
#> 1 mu 0.392 0.561 prior-data conflict
#> 2 sigma 0.290 0.530 prior-data conflict
To visually inspect changes to the posterior, use one of the diagnostic plot functions. Estimates with high Pareto-k values may be inaccurate and are indicated.
powerscale_plot_dens(fit)
powerscale_plot_ecdf(fit)
powerscale_plot_quantities(fit)
In some cases, setting moment_match = TRUE
will improve the unreliable
estimates at the cost of some further computation. This requires the
iwmm
package.
Noa Kallioinen, Topi Paananen, Paul-Christian Bürkner, Aki Vehtari (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling. Statistics and Computing. 34, 57. https://doi.org/10.1007/s11222-023-10366-5
Topi Paananen, Juho Piironen, Paul-Christian Bürkner, Aki Vehtari (2021). Implicitly adaptive importance sampling. Statistics and Computing 31, 16. https://doi.org/10.1007/s11222-020-09982-2
Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, Jonah Gabry (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research. 25, 72. https://jmlr.org/papers/v25/19-556.html
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.