#' Define decision tree model
#'
#' Basic constructor for decision tree classes for
#' different data formats.
#'
#' @template args-transmat
#' @template args-tree_dat
#' @template args-dat_long
#' @param ... additional arguments
#'
#' @return transmat, tree_dat or dat_long class object
#' @import dplyr
#'
#' @export
#'
#' @examples
#'
#' define_model(transmat =
#' list(prob = matrix(data=c(NA, 0.5, 0.5), nrow = 1),
#' vals = matrix(data=c(NA, 1, 2), nrow = 1)
#' ))
#'
#' define_model(tree_dat =
#' list(child = list("1" = c(2, 3),
#' "2" = NULL,
#' "3" = NULL),
#' dat = data.frame(node = 1:3,
#' prob = c(NA, 0.5, 0.5),
#' vals = c(0, 1, 2))
#' ))
#'
#' define_model(dat_long = data.frame(from = c(NA, 1, 1),
#' to = 1:3,
#' prob = c(NA, 0.5, 0.5),
#' vals = c(0, 1, 2)))
define_model <- function(transmat,
tree_dat,
dat_long, ...) {
if (missing(transmat) &&
missing(tree_dat) &&
missing(dat_long))
stop("All tree data inputs are missing.")
if (!missing(transmat)) {
return(
new_transmat(transmat, ...))
}
if (!missing(tree_dat)) {
return(
new_tree_dat(tree_dat, ...))
}
if (!missing(dat_long)) {
return(
new_dat_long(dat_long, ...))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.