#' Train lightgbm model
#'
#' @param data Training data.
#' @param label Labels.
#' @param params A list of parameters.
#' @param ... Additional parameters.
#'
#' @return A model object.
#'
#' @export
#'
#' @examplesIf is_installed_lightgbm()
#' sim_data <- msaenet::msaenet.sim.binomial(
#' n = 100,
#' p = 10,
#' rho = 0.6,
#' coef = rnorm(5, mean = 0, sd = 10),
#' snr = 1,
#' p.train = 0.8,
#' seed = 42
#' )
#'
#' fit <- suppressWarnings(
#' lightgbm_train(
#' data = sim_data$x.tr,
#' label = sim_data$y.tr,
#' params = list(
#' objective = "binary",
#' learning_rate = 0.1,
#' num_iterations = 100,
#' max_depth = 3,
#' num_leaves = 2^3 - 1,
#' num_threads = 1
#' ),
#' verbose = -1
#' )
#' )
#'
#' fit
lightgbm_train <- function(data, label, params, ...) {
rlang::check_installed("lightgbm", reason = "to train the model")
cl <- rlang::call2(
"lightgbm",
.ns = "lightgbm",
data = data,
label = label,
params = params,
...
)
rlang::eval_tidy(cl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.