dyn_adj_est | R Documentation |
Use dyn_adj_est
to estimate several models for dynamic
adjustment analysis.
dyn_adj_est(y, xreg, h, p, ...)
y |
A vector. If the user estimates the first regression described
below, |
xreg |
A vector. Infation or core inflation depending of the |
h |
An integer. The horizon of prediction. |
p |
An integer to specify the lag p. |
... |
Additional parameter to pass to the function
|
For \pi
being the healine inflation and \pi^*
a core inflation measure, two specifications of a regression model can be estimated through this
function:
\pi_{t + h} - \pi_t =
a_0 + \lambda_h(\pi_t - \pi^*_t) + \sum_{i = 1}^pa_i\pi_{t - i} +
e_{t + h}
,
\pi^*_{t + h} - \pi^*_t =
a^*_0 + \lambda^*_h(\pi_t - \pi^*_t) + \sum_{i = 1}^pa^*_i\pi^*_{t - i} +
e^*_{t + h}
.
A list where each element of it contains the following:
data |
A tibble with the data used in fitting the model. |
model |
A |
n_obs |
Number of observations of |
h |
Horizon used in direct estimation. |
lags, comb_regr
inf_head <- coreinf_br[["ipca"]]
inf_corems <- coreinf_br[["ipcams"]]
dyn_adj_est(inf_head, inf_corems, 2, 2)
dyn_adj_est(inf_corems, inf_head, 2, 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.