View source: R/antsSpatialICAfMRI.R
| antsSpatialICAfMRI | R Documentation | 
Perform spatial ICA on group or individual fMRI data. Preprocessing should be performed prior to calling this function (cf preprocessfMRI.R).
antsSpatialICAfMRI(
  boldImages,
  maskImage = NULL,
  numberOfICAComponents = 20,
  normalizeComponentImages = TRUE,
  verbose = FALSE
)
| boldImages | a list of 4-D ANTs image fMRI data. | 
| maskImage | A 3-D ANTs image defining the region of interest. This must be specified. | 
| numberOfICAComponents | Number of estimated observers (components). | 
| normalizeComponentImages | Boolean to specify whether each component vector element is normalized to its z-score. | 
| verbose | boolean setting verbosity level. | 
Output list includes standard ICA matrices from the fastICA algorithm:
X = pre-processed data matrix
K = pre-whitening matrix that projects data onto the first n.comp principal components
W = estimated un-mixing matrix (see definition in details)
A = estimated mixing matrix
S = estimated source matrix
and the component images.
Tustison NJ, Avants BB
set.seed(2017)
boldImages <- list()
n <- 16
nvox <- n * n * n * 12
dims <- c(n, n, n, 12)
boldImages[[1]] <- makeImage(dims, rnorm(nvox) + 500)
boldImages[[2]] <- makeImage(dims, rnorm(nvox) + 500)
boldImages[[3]] <- makeImage(dims, rnorm(nvox) + 500)
maskImage <- getAverageOfTimeSeries(boldImages[[1]]) * 0 + 1
icaResults <- antsSpatialICAfMRI(boldImages, maskImage,
  numberOfICAComponents = 2
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.