MLSurvival: MLSurvival

Description Usage Arguments Value

View source: R/MLSurvival.R

Description

Train and evelaute machine learning survival and classification models for time to event data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
MLSurvival(x, ...)

## Default S3 method:
MLSurvival(x, y, method, predict.times, trControl,
  parallel = FALSE, dummy.vars = TRUE, mc.cores = 2, seed = 123,
  perf = TRUE, ...)

## S3 method for class 'formula'
MLSurvival(form, dat, newdata = NULL, method,
  predict.times, trControl, parallel = FALSE, dummy.vars = TRUE,
  mc.cores = 2, seed = 123, perf = TRUE, ...)

Arguments

...

further arguments passed to caret or other methods.

method

character verctor of machine learning algorithms. Implemented algorithms

  1. glm logistic regression

  2. glmnet elastic net

  3. gbm gradient boosting machine

  4. ranger random forest

  5. svmRadial support vector machine with radial basis kernel

  6. xgbTree extreem boosting machine

predict.times

numeric vector containing the survival prediction times

trControl

list of control parameters for caret and the ranger models

parallel

run cross-validation in parallel?

dummy.vars

create dummy variables/model.matrix

mc.cores

number of cores

seed

random seed

perf

get performance metrics ?

form

survival formula

dat

data frame

Value

returns a list with items:


nguforche/MLSurvival documentation built on July 28, 2019, 1:59 p.m.