#' Aortic valve replacement surgery data from the \code{joineR} package
#'
#' @description A longitudinal data on detecting the
#' effects of different heart valves, differing on type of tissue, implanted
#' in the aortic position. The data consists of longitudinal measurements (three cardiac functions)
#' from patients who underwent aortic valve replacement from 1991 to 2001 at the
#' Royal Brompton Hospital, London, United Kingdom. The data was first reported in [1]
#' where the authors used all patients during the 10 years period with at least a year of follow
#' up with serial echocardiographic measurements and applied a linear mixed-effect model
#' to predict left ventricular mass index (LVMI). Similarly, the data was used in [2] to predict longitudinal
#' profile of LVMI categorized as high or normal using several patient baseline characteristics and
#' laboratory variables. LVMI is considered increased if LVMI >134 g/m 2 in male patients and
#' LVMI >110 g/m 2 in female patients, thus values in this range for both sex was considered
#' as the positive class in MEml.
#' @usage data(heart.valve)
#' @format This is a data frame in the unbalanced format, that is, with one row
#' per observation. The data consists in columns for patient identification,
#' time of measurements, longitudinal multiple longitudinal measurements,
#' baseline covariates, and survival data. The column names are identified as
#' follows:
#'
#' \describe{
#'
#' \item{\code{num}}{number for patient identification.}
#'
#' \item{\code{sex}}{gender of patient (\code{0 = }Male and \code{1 =
#' }Female).}
#'
#' \item{\code{age}}{age of patient at day of surgery (years).}
#'
#' \item{\code{time}}{observed time point, with surgery date as the time
#' origin (years).}
#'
#' \item{\code{fuyrs}}{maximum follow up time, with surgery date as the time
#' origin (years).}
#'
#' \item{\code{status}}{censoring indicator (\code{1 = }died and \code{0 =
#' }lost at follow up).}
#'
#' \item{\code{grad}}{valve gradient at follow-up visit.}
#'
#' \item{\code{log.grad}}{natural log transformation of \code{grad}.}
#'
#' \item{\code{lvmi}}{left ventricular mass index (standardised) at follow-up
#' visit.}
#'
#' \item{\code{log.lvmi}}{natural log transformation of \code{lvmi}.}
#'
#' \item{\code{ef}}{ejection fraction at follow-up visit.}
#'
#' \item{\code{bsa}}{preoperative body surface area.}
#'
#' \item{\code{lvh}}{preoperative left ventricular hypertrophy.}
#'
#' \item{\code{prenyha}}{preoperative New York Heart Association (NYHA)
#' classification (\code{1 = }I/II and \code{3 = }III/IV).}
#'
#' \item{\code{redo}}{previous cardiac surgery.}
#'
#' \item{\code{size}}{size of the valve (millimeters).}
#'
#' \item{\code{con.cabg}}{concomitant coronary artery bypass graft.}
#'
#' \item{\code{creat}}{preoperative serum creatinine (\eqn{\mu}mol/mL).}
#'
#' \item{\code{dm}}{preoperative diabetes.}
#'
#' \item{\code{acei}}{preoperative use of ace inhibitor.}
#'
#' \item{\code{lv}}{preoperative left ventricular ejection fraction (LVEF)
#' (\code{1 = }good, \code{2 = }moderate, and \code{3 = }poor).}
#'
#' \item{\code{emergenc}}{operative urgency (\code{0 = }elective, \code{1 =
#' }urgent, and \code{3 = }emergency).}
#'
#' \item{\code{hc}}{preoperative high cholesterol (\code{0 = }absent, \code{1
#' = }present treated, and \code{2 = }present untreated).}
#'
#' \item{\code{sten.reg.mix}}{aortic valve haemodynamics (\code{1 = }stenosis,
#' \code{2 = }regurgitation, \code{3 = }mixed).}
#'
#' \item{\code{hs}}{implanted aortic prosthesis type (\code{1 = }homograft
#' and \code{0 = }stentless porcine tissue).}
#'
#' \item{\code{inc.lvmi}}{increase in LVMI. (\code{1= } if LVMI >134 g/m 2 in male patients and
#' LVMI >110 g/m 2 in female patients, \code{0=}Otherwise}
#'
#'
#' }
#' @keywords datasets
#' @seealso \code{\link{mental}}, \code{\link{liver}}, \code{\link{epileptic}},
#' \code{\link{aids}}.
#' @source Mr Eric Lim (\url{http://www.drericlim.com})
#' @docType data
#' @references
#'
#' Lim E, Ali A, Theodorou P, Sousa I, Ashrafian H, Chamageorgakis T, Duncan M,
#' Diggle P, Pepper J. A longitudinal study of the profile and predictors of
#' left ventricular mass regression after stentless aortic valve replacement.
#' \emph{Ann Thorac Surg.} 2008; \strong{85(6)}: 2026-2029.
#
#' Che Ngufor, Holly Van Houten, Brian S. Caffo , Nilay D. Shah, Rozalina G. McCoy
#' Mixed Effect Machine Learning: a framework for predicting longitudinal change in hemoglobin A1c,
#' in Journal of Biomedical Informatics, 2018
"heart.valve"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.