readd(data_ACB) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_ACB) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_ACB)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT
#> 2 2 <fit[+]> ARIMA(2,1,2)(0,0,1)[5] WITH DRIFT W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_ACB)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(2,1,2)(0,0,1)[5] WITH DRIFT W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_ACB) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_ACB)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0) WITH DRIFT Test 0.93 2.84 2.8 2.78 1.13 0.22
#> 2 2 ARIMA(2,1,2)(0,0,1)[5] WITH DRIFT W/ XGBOOST ERRORS Test 1.25 3.82 3.77 3.73 1.43 0.22
#> 3 3 ETS(M,AD,M) Test 1 2.99 3.01 3.05 1.2 0.02
#> 4 4 PROPHET Test 1.34 4.01 4.03 4.11 1.54 0.21
readd(two_week_fc_ACB)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 ACB 2022-01-03 34.6 32.8 36.5 ARIMA(0,1,0) WITH DRIFT
#> 2 ACB 2022-01-04 34.7 32.8 36.5 ARIMA(0,1,0) WITH DRIFT
#> 3 ACB 2022-01-05 34.7 32.8 36.6 ARIMA(0,1,0) WITH DRIFT
#> 4 ACB 2022-01-06 34.7 32.9 36.6 ARIMA(0,1,0) WITH DRIFT
#> 5 ACB 2022-01-07 34.8 32.9 36.7 ARIMA(0,1,0) WITH DRIFT
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.