readd(data_SSB) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_SSB) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_SSB)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(1,1,1)(0,0,1)[5]
#> 2 2 <fit[+]> ARIMA(1,1,1)(0,0,1)[5] W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,A,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_SSB)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(1,1,1)(0,0,1)[5] Test <tibble [64 x 4]>
#> 2 2 <fit[+]> ARIMA(1,1,1)(0,0,1)[5] W/ XGBOOST ERRORS <NA> <lgl [1]>
#> 3 3 <fit[+]> ETS(M,A,M) Test <tibble [64 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [64 x 4]>
readd(forecast_tbl_SSB) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_SSB)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(1,1,1)(0,0,1)[5] Test 4.36 11.0 9.8 11.9 4.97 0
#> 2 2 ARIMA(1,1,1)(0,0,1)[5] W/ XGBOOST ERRORS <NA> NA NA NA NA NA NA
#> 3 3 ETS(M,A,M) Test 5.07 12.9 11.4 13.9 5.69 0.4
#> 4 4 PROPHET Test 5.39 13.7 12.1 14.9 6.02 0.58
readd(two_week_fc_SSB)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 SSB 2022-01-03 46.6 38.4 54.8 ARIMA(1,1,1)(0,0,1)[5]
#> 2 SSB 2022-01-04 46.6 38.4 54.8 ARIMA(1,1,1)(0,0,1)[5]
#> 3 SSB 2022-01-05 46.7 38.5 55.0 ARIMA(1,1,1)(0,0,1)[5]
#> 4 SSB 2022-01-06 46.9 38.7 55.1 ARIMA(1,1,1)(0,0,1)[5]
#> 5 SSB 2022-01-07 46.9 38.7 55.1 ARIMA(1,1,1)(0,0,1)[5]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.