readd(data_AAA) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_AAA) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_AAA)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0)
#> 2 2 <fit[+]> ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_AAA)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0) Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,1,0) W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_AAA) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_AAA)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0) Test 1.54 8.04 4.06 8.69 2.17 NA
#> 2 2 ARIMA(0,1,0) W/ XGBOOST ERRORS Test 1.27 6.63 3.37 7.1 1.91 NA
#> 3 3 ETS(M,AD,M) Test 1.64 8.62 4.34 9.33 2.27 0
#> 4 4 PROPHET Test 1.26 6.58 3.34 7.04 1.85 0.55
readd(two_week_fc_AAA)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 AAA 2022-01-03 18.7 15.7 21.8 PROPHET
#> 2 AAA 2022-01-04 18.7 15.7 21.8 PROPHET
#> 3 AAA 2022-01-05 18.8 15.7 21.9 PROPHET
#> 4 AAA 2022-01-06 18.9 15.8 22.0 PROPHET
#> 5 AAA 2022-01-07 18.9 15.8 21.9 PROPHET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.