readd(data_BID) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_BID) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_BID)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(2,1,1)(2,0,1)[5]
#> 2 2 <fit[+]> ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_BID)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(2,1,1)(2,0,1)[5] Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,1,0) W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_BID) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_BID)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(2,1,1)(2,0,1)[5] Test 2.46 7.05 6.2 7.38 2.81 0.25
#> 2 2 ARIMA(0,1,0) W/ XGBOOST ERRORS Test 2.29 6.58 5.78 6.85 2.58 0.25
#> 3 3 ETS(M,AD,M) Test 2.67 7.63 6.72 8.03 3.08 0.08
#> 4 4 PROPHET Test 4.15 11.9 10.5 12.9 4.73 0.62
readd(two_week_fc_BID)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 BID 2022-01-03 37.7 33.4 41.9 ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 2 BID 2022-01-04 37.7 33.4 41.9 ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 3 BID 2022-01-05 37.7 33.4 41.9 ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 4 BID 2022-01-06 37.7 33.4 41.9 ARIMA(0,1,0) W/ XGBOOST ERRORS
#> 5 BID 2022-01-07 37.7 33.4 41.9 ARIMA(0,1,0) W/ XGBOOST ERRORS
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.