readd(data_BVH) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_BVH) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_BVH)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,2)
#> 2 2 <fit[+]> ARIMA(1,1,0) W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_BVH)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,2) Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(1,1,0) W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_BVH) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_BVH)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,2) Test 2.85 4.85 3.62 4.71 3.44 0
#> 2 2 ARIMA(1,1,0) W/ XGBOOST ERRORS Test 2.94 5.02 3.73 4.85 3.61 0.69
#> 3 3 ETS(M,AD,M) Test 2.84 4.83 3.61 4.7 3.42 0
#> 4 4 PROPHET Test 7.25 11.8 9.2 12.6 7.76 0.49
readd(two_week_fc_BVH)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 BVH 2022-01-03 56.1 50.5 61.8 ETS(M,AD,M)
#> 2 BVH 2022-01-04 56.2 50.6 61.9 ETS(M,AD,M)
#> 3 BVH 2022-01-05 56.5 50.8 62.1 ETS(M,AD,M)
#> 4 BVH 2022-01-06 56.1 50.4 61.7 ETS(M,AD,M)
#> 5 BVH 2022-01-07 55.6 49.9 61.2 ETS(M,AD,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.