readd(data_FPT) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_FPT) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_FPT)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(1,2,2)(0,0,2)[5]
#> 2 2 <fit[+]> ARIMA(0,2,1)(2,0,0)[5] W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_FPT)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(1,2,2)(0,0,2)[5] Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,2,1)(2,0,0)[5] W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_FPT) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_FPT)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(1,2,2)(0,0,2)[5] Test 7.71 8.06 9.32 7.64 8.97 0.43
#> 2 2 ARIMA(0,2,1)(2,0,0)[5] W/ XGBOOST ERRORS Test 8.69 9.07 10.5 8.57 9.85 0.43
#> 3 3 ETS(M,AD,M) Test 5.36 5.6 6.48 5.41 5.97 0.32
#> 4 4 PROPHET Test 7.16 7.48 8.65 7.12 8.33 0.45
readd(two_week_fc_FPT)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 FPT 2022-01-03 93.2 83.4 103. ETS(M,AD,M)
#> 2 FPT 2022-01-04 93.3 83.4 103. ETS(M,AD,M)
#> 3 FPT 2022-01-05 93.2 83.3 103. ETS(M,AD,M)
#> 4 FPT 2022-01-06 93.0 83.1 103. ETS(M,AD,M)
#> 5 FPT 2022-01-07 92.8 82.9 103. ETS(M,AD,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.