readd(data_MBB) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_MBB) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_MBB)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT
#> 2 2 <fit[+]> ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_MBB)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_MBB) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_MBB)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0) WITH DRIFT Test 1.37 4.83 4.58 4.69 1.58 0
#> 2 2 ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS Test 1.83 6.46 6.11 6.22 2.01 0
#> 3 3 ETS(M,AD,M) Test 0.53 1.84 1.76 1.84 0.72 0.01
#> 4 4 PROPHET Test 0.64 2.23 2.13 2.21 0.77 0
readd(two_week_fc_MBB)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 MBB 2022-01-03 28.9 27.7 30.1 ETS(M,AD,M)
#> 2 MBB 2022-01-04 29.1 27.9 30.3 ETS(M,AD,M)
#> 3 MBB 2022-01-05 29.1 27.9 30.3 ETS(M,AD,M)
#> 4 MBB 2022-01-06 29.1 27.9 30.3 ETS(M,AD,M)
#> 5 MBB 2022-01-07 29.1 27.9 30.3 ETS(M,AD,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.