readd(data_PNJ) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_PNJ) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_PNJ)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0)
#> 2 2 <fit[+]> ARIMA(2,1,2)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_PNJ)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0) Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(2,1,2)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_PNJ) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_PNJ)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0) Test 4.3 4.38 2.65 4.31 4.98 NA
#> 2 2 ARIMA(2,1,2)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS Test 5.81 6.02 3.57 5.77 7.06 0.23
#> 3 3 ETS(M,AD,M) Test 5.97 6.18 3.67 5.91 7.35 0.08
#> 4 4 PROPHET Test 9.27 9.15 5.7 9.67 10.2 0.27
readd(two_week_fc_PNJ)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 PNJ 2022-01-03 96.2 88.0 104. ARIMA(0,1,0)
#> 2 PNJ 2022-01-04 96.2 88.0 104. ARIMA(0,1,0)
#> 3 PNJ 2022-01-05 96.2 88.0 104. ARIMA(0,1,0)
#> 4 PNJ 2022-01-06 96.2 88.0 104. ARIMA(0,1,0)
#> 5 PNJ 2022-01-07 96.2 88.0 104. ARIMA(0,1,0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.