readd(data_SSI) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_SSI) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_SSI)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0)(0,0,1)[5] WITH DRIFT
#> 2 2 <fit[+]> ARIMA(0,1,0)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_SSI)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0)(0,0,1)[5] WITH DRIFT Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,1,0)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_SSI) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_SSI)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0)(0,0,1)[5] WITH DRIFT Test 4.34 8.69 4.48 9.13 5.29 0.69
#> 2 2 ARIMA(0,1,0)(1,0,0)[5] WITH DRIFT W/ XGBOOST ERRORS Test 4.16 8.43 4.3 8.77 5.02 0.69
#> 3 3 ETS(M,AD,M) Test 5.09 10.1 5.25 10.8 6.2 0.61
#> 4 4 PROPHET Test 3.99 8.99 4.12 8.5 4.6 0.69
readd(two_week_fc_SSI)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 SSI 2022-01-03 52.1 44.5 59.7 PROPHET
#> 2 SSI 2022-01-04 52.1 44.5 59.7 PROPHET
#> 3 SSI 2022-01-05 52.2 44.6 59.8 PROPHET
#> 4 SSI 2022-01-06 52.4 44.8 60.0 PROPHET
#> 5 SSI 2022-01-07 52.5 44.9 60.1 PROPHET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.