readd(data_TCB) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_TCB) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_TCB)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT
#> 2 2 <fit[+]> ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_TCB)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,0) WITH DRIFT Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_TCB) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_TCB)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,0) WITH DRIFT Test 3.58 7.12 6.43 6.75 4.39 0.48
#> 2 2 ARIMA(0,1,0) WITH DRIFT W/ XGBOOST ERRORS Test 4.2 8.33 7.54 7.87 4.92 0.48
#> 3 3 ETS(M,AD,M) Test 2.26 4.49 4.06 4.34 2.84 0.35
#> 4 4 PROPHET Test 1.65 3.15 2.96 3.22 2.03 0.41
readd(two_week_fc_TCB)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 TCB 2022-01-03 50.5 47.2 53.9 PROPHET
#> 2 TCB 2022-01-04 50.5 47.1 53.9 PROPHET
#> 3 TCB 2022-01-05 50.6 47.3 54.0 PROPHET
#> 4 TCB 2022-01-06 50.7 47.3 54.0 PROPHET
#> 5 TCB 2022-01-07 50.7 47.4 54.1 PROPHET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.