readd(data_TNG) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_TNG) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_TNG)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(0,1,1)
#> 2 2 <fit[+]> ARIMA(2,1,2) W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_TNG)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(0,1,1) Test <tibble [59 x 4]>
#> 2 2 <fit[+]> ARIMA(2,1,2) W/ XGBOOST ERRORS Test <tibble [59 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [59 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [59 x 4]>
readd(forecast_tbl_TNG) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_TNG)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,1) Test 1.54 4.7 2.34 4.85 1.86 NA
#> 2 2 ARIMA(2,1,2) W/ XGBOOST ERRORS Test 1.3 3.98 1.96 4.06 1.55 0
#> 3 3 ETS(M,AD,M) Test 1.28 4.13 1.94 3.97 1.79 0.03
#> 4 4 PROPHET Test 1.69 5.28 2.56 5.41 1.96 0.09
readd(two_week_fc_TNG)
#> # A tibble: 5 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 TNG 2022-01-03 33.0 30.1 36.0 ETS(M,AD,M)
#> 2 TNG 2022-01-04 33.3 30.4 36.3 ETS(M,AD,M)
#> 3 TNG 2022-01-05 33.5 30.5 36.5 ETS(M,AD,M)
#> 4 TNG 2022-01-06 33.8 30.8 36.7 ETS(M,AD,M)
#> 5 TNG 2022-01-07 33.4 30.5 36.4 ETS(M,AD,M)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.