readd(data_vci) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_vci) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_vci)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(1,2,1)(0,0,2)[5]
#> 2 2 <fit[+]> ARIMA(0,2,2)(1,0,2)[5] W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_vci)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(1,2,1)(0,0,2)[5] Test <tibble [65 x 4]>
#> 2 2 <fit[+]> ARIMA(0,2,2)(1,0,2)[5] W/ XGBOOST ERRORS Test <tibble [65 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [65 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [65 x 4]>
readd(forecast_tbl_vci) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_vci)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(1,2,1)(0,0,2)[5] Test 4.88 10.8 5.32 11.9 7.2 0.82
#> 2 2 ARIMA(0,2,2)(1,0,2)[5] W/ XGBOOST ERRORS Test 4.72 10.5 5.14 11.5 6.99 0.84
#> 3 3 ETS(M,AD,M) Test 6.82 15 7.43 17.4 9.84 0.51
#> 4 4 PROPHET Test 4.34 9.72 4.74 10.5 6.51 0.81
readd(two_week_fc_vci)
#> # A tibble: 6 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 vci 2021-07-23 47.5 36.7 58.2 PROPHET
#> 2 vci 2021-07-26 47.8 37.0 58.5 PROPHET
#> 3 vci 2021-07-27 47.8 37.1 58.6 PROPHET
#> 4 vci 2021-07-28 48.0 37.3 58.7 PROPHET
#> 5 vci 2021-07-29 48.2 37.4 58.9 PROPHET
#> 6 vci 2021-07-30 48.3 37.6 59.1 PROPHET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.