readd(data_vni) %>%
plot_time_series(date, value, .interactive = interactive)
readd(splits_vni) %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(date, value, .interactive = FALSE)
readd(models_tbl_vni)
#> # Modeltime Table
#> # A tibble: 4 x 3
#> .model_id .model .model_desc
#> <int> <list> <chr>
#> 1 1 <fit[+]> ARIMA(2,1,2)(0,0,1)[5]
#> 2 2 <fit[+]> ARIMA(2,1,2)(1,0,0)[5] W/ XGBOOST ERRORS
#> 3 3 <fit[+]> ETS(M,AD,M)
#> 4 4 <fit[+]> PROPHET
readd(calibration_tbl_vni)
#> # Modeltime Table
#> # A tibble: 4 x 5
#> .model_id .model .model_desc .type .calibration_data
#> <int> <list> <chr> <chr> <list>
#> 1 1 <fit[+]> ARIMA(2,1,2)(0,0,1)[5] Test <tibble [65 x 4]>
#> 2 2 <fit[+]> ARIMA(2,1,2)(1,0,0)[5] W/ XGBOOST ERRORS Test <tibble [65 x 4]>
#> 3 3 <fit[+]> ETS(M,AD,M) Test <tibble [65 x 4]>
#> 4 4 <fit[+]> PROPHET Test <tibble [65 x 4]>
readd(forecast_tbl_vni) %>%
plot_modeltime_forecast(.legend_max_width = 25,
.interactive = interactive)
#> Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -Inf
readd(accuracy_tbl_vni)$`_data`
#> # A tibble: 4 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(2,1,2)(0,0,1)[5] Test 121. 9.12 10.8 9.66 136. 0.01
#> 2 2 ARIMA(2,1,2)(1,0,0)[5] W/ XGBOOST ERRORS Test 121. 9.14 10.9 9.69 136. 0.01
#> 3 3 ETS(M,AD,M) Test 114. 8.6 10.2 9.08 129. 0.59
#> 4 4 PROPHET Test 21.2 1.66 1.9 1.64 26.2 0.88
readd(two_week_fc_vni)
#> # A tibble: 6 x 6
#> .ticker .index .value .low .high .model_desc
#> <chr> <date> <dbl> <dbl> <dbl> <chr>
#> 1 vni 2021-07-23 1403. 1360. 1447. PROPHET
#> 2 vni 2021-07-26 1405. 1362. 1449. PROPHET
#> 3 vni 2021-07-27 1407. 1364. 1450. PROPHET
#> 4 vni 2021-07-28 1409. 1366. 1453. PROPHET
#> 5 vni 2021-07-29 1412. 1369. 1456. PROPHET
#> 6 vni 2021-07-30 1415. 1371. 1458. PROPHET
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.