mvgam-package: mvgam: Multivariate (Dynamic) Generalized Additive Models

mvgam-packageR Documentation

mvgam: Multivariate (Dynamic) Generalized Additive Models

Description

logo

Fit Bayesian Dynamic Generalized Additive Models to multivariate observations. Users can build nonlinear State-Space models that can incorporate semiparametric effects in observation and process components, using a wide range of observation families. Estimation is performed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the software 'Stan'. References: Clark & Wells (2023) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/2041-210X.13974")}.

Author(s)

Maintainer: Nicholas J Clark nicholas.j.clark1214@gmail.com (ORCID)

Other contributors:

  • Sarah Heaps (ORCID) (VARMA parameterisations) [contributor]

  • Scott Pease (ORCID) (broom enhancements) [contributor]

  • Matthijs Hollanders (ORCID) (ggplot visualizations) [contributor]

See Also

Useful links:


nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.