bmrvarx: PX-DA MCMC routine to implement a bmrvarx model

View source: R/bmrvarx.R

bmrvarxR Documentation

PX-DA MCMC routine to implement a bmrvarx model

Description

PX-DA MCMC routine to implement a bmrvarx model

Usage

bmrvarx(
  formula,
  data,
  ordinal_outcomes,
  sig_prior = 1e+06,
  nsim = 1000,
  burn_in = 100,
  thin = 10,
  seed = 14,
  max_iter_rej = 500,
  N_burn_trunc = 10
)

Arguments

formula

an object of class "formula"; a symbolic description of the model to be fitted

data

a dataframe containing outcome variables, covariates, and a patient or subject identifier

ordinal_outcomes

a character string containing the names of the ordinal outcomes

sig_prior

scalar, prior variance on the regression coefficients

nsim

positive integer, number of iterations with default of 1000

burn_in

positive integer, number of iterations to remove with default of 100

thin

positive integer, specifiers the period of saving samples. Default of 10

seed

positive integer, seed for random number generation

max_iter_rej

maximum number of rejection algorithm attempts for multivariate truncated normal

N_burn_trunc

integer, number of burn-in draws from the truncated multivariate normal Gibbs sampler

Value

bmrvarx


nickseedorff/bmrarm documentation built on April 17, 2025, 9:43 p.m.