knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The package erf
implements the extremal random forests (ERF), an algorithm to
predict extreme conditional quantiles in large dimensions. For more details see @merg2020 [https://arxiv.org/abs/2201.12865].
install.packages("erf")
You can install the development version from GitHub with:
# install.packages("devtools") devtools::install_github("nicolagnecco/erf")
This basic example shows how to fit and predict conditional quantiles with erf
.
library(erf) library(ggplot2) library(dplyr) # Function to model scale scale_step <- function(X) { ## numeric_vecotr -> numeric_vector ## produce scale function: scale(X) = step function sigma_x <- 1 + 1 * (X > 0) return(sigma_x) } # Generate data set.seed(42) n <- 2000 p <- 10 X <- matrix(runif(n * p, min = -1, max = 1), n, p) Y <- scale_step(X[, 1]) * rnorm(n) # Fit ERF fit_erf <- erf(X, Y, intermediate_quantile = 0.8) # Predict ERF quantiles <- c(0.9, 0.99) pred_erf <- predict(fit_erf, newdata = X, quantiles = quantiles) true_quantiles <- matrix(rep(qnorm(quantiles), n), ncol = length(quantiles), byrow = TRUE) * scale_step(X[, 1]) # Plot results my_palette <- list( "red" = "#D55E00", "blue" = "#0072B2" ) ggplot() + geom_point(aes(x = X[, 1], y = Y), alpha = .5, col = "grey") + geom_point(aes(x = X[, 1], y = pred_erf[, 2]), alpha = .5, col = my_palette$blue) + geom_line(aes(x = X[, 1], y = true_quantiles[, 2]), col = my_palette$red, linetype = "dashed", size = 1) + theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.