knitr::opts_chunk$set(echo = TRUE)
devtools::install_github("OmaymaS/yelpr") library(yelpr) library(jsonlite) library(dplyr) library(tidyverse) key <- Sys.getenv("YELP_KEY")
nyc_restaurants <- business_search(api_key = key, location = 'New York City', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } for (i in 1:19) { varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") offset_val <- i * 50 new_restaurants <- business_search(api_key = key, location = 'New York City', term = "Dunkin", limit = 50, offset = offset_val) new_restaurants_df <- data.frame(cbind(as.character(new_restaurants$businesses$id), as.character(new_restaurants$businesses$alias), as.character(new_restaurants$businesses$name), as.character(new_restaurants$businesses$image_url), as.logical(new_restaurants$businesses$is_closed), as.character(new_restaurants$businesses$url), as.numeric(new_restaurants$businesses$review_count), as.numeric(new_restaurants$businesses$rating), as.numeric(new_restaurants$businesses$coordinates$latitude), as.numeric(new_restaurants$businesses$coordinates$longitude), as.character(new_restaurants$businesses$transactions), as.character(new_restaurants$businesses$price), as.numeric(new_restaurants$businesses$distance), as.character(new_restaurants$businesses$location$address1), as.character(new_restaurants$businesses$location$city), as.character(new_restaurants$businesses$location$state), as.numeric(new_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(new_restaurants_df) <- varnames for (j in 1:ncol(new_restaurants_df)) { new_restaurants_df$full_address[j] <- paste0(flatten(new_restaurants$businesses$location$display_address[j]), sep = ", ", collapse = "") new_restaurants_df$categories[j] <- paste0(flatten(new_restaurants$businesses$categories[[j]]), sep = ", ", collapse = "") } restaurants_df <- rbind(restaurants_df, new_restaurants_df) } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./nyc_Dunkin.csv", na = "NA")
nyc_restaurants <- business_search(api_key = key, location = 'Manhattan', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } for (i in 1:19) { varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") offset_val <- i * 50 new_restaurants <- business_search(api_key = key, location = 'Manhattan', term = "Dunkin'", limit = 50, offset = offset_val) new_restaurants_df <- data.frame(cbind(as.character(new_restaurants$businesses$id), as.character(new_restaurants$businesses$alias), as.character(new_restaurants$businesses$name), as.character(new_restaurants$businesses$image_url), as.logical(new_restaurants$businesses$is_closed), as.character(new_restaurants$businesses$url), as.numeric(new_restaurants$businesses$review_count), as.numeric(new_restaurants$businesses$rating), as.numeric(new_restaurants$businesses$coordinates$latitude), as.numeric(new_restaurants$businesses$coordinates$longitude), as.character(new_restaurants$businesses$transactions), as.character(new_restaurants$businesses$price), as.numeric(new_restaurants$businesses$distance), as.character(new_restaurants$businesses$location$address1), as.character(new_restaurants$businesses$location$city), as.character(new_restaurants$businesses$location$state), as.numeric(new_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(new_restaurants_df) <- varnames for (j in 1:ncol(new_restaurants_df)) { new_restaurants_df$full_address[j] <- paste0(flatten(new_restaurants$businesses$location$display_address[j]), sep = ", ", collapse = "") new_restaurants_df$categories[j] <- paste0(flatten(new_restaurants$businesses$categories[[j]]), sep = ", ", collapse = "") } restaurants_df <- rbind(restaurants_df, new_restaurants_df) } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./manhattan_Dunkin.csv", na = "NA")
nyc_restaurants <- business_search(api_key = key, location = 'Brooklyn', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } for (i in 1:19) { varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") offset_val <- i * 50 new_restaurants <- business_search(api_key = key, location = 'Brooklyn', term = "Dunkin'", limit = 50, offset = offset_val) new_restaurants_df <- data.frame(cbind(as.character(new_restaurants$businesses$id), as.character(new_restaurants$businesses$alias), as.character(new_restaurants$businesses$name), as.character(new_restaurants$businesses$image_url), as.logical(new_restaurants$businesses$is_closed), as.character(new_restaurants$businesses$url), as.numeric(new_restaurants$businesses$review_count), as.numeric(new_restaurants$businesses$rating), as.numeric(new_restaurants$businesses$coordinates$latitude), as.numeric(new_restaurants$businesses$coordinates$longitude), as.character(new_restaurants$businesses$transactions), as.character(new_restaurants$businesses$price), as.numeric(new_restaurants$businesses$distance), as.character(new_restaurants$businesses$location$address1), as.character(new_restaurants$businesses$location$city), as.character(new_restaurants$businesses$location$state), as.numeric(new_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(new_restaurants_df) <- varnames for (j in 1:ncol(new_restaurants_df)) { new_restaurants_df$full_address[j] <- paste0(flatten(new_restaurants$businesses$location$display_address[j]), sep = ", ", collapse = "") new_restaurants_df$categories[j] <- paste0(flatten(new_restaurants$businesses$categories[[j]]), sep = ", ", collapse = "") } restaurants_df <- rbind(restaurants_df, new_restaurants_df) } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./Brooklyn_Dunkin.csv", na = "NA")
nyc_restaurants <- business_search(api_key = key, location = 'Queens', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } for (i in 1:19) { varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") offset_val <- i * 50 new_restaurants <- business_search(api_key = key, location = 'Queens', term = "Dunkin'", limit = 50, offset = offset_val) new_restaurants_df <- data.frame(cbind(as.character(new_restaurants$businesses$id), as.character(new_restaurants$businesses$alias), as.character(new_restaurants$businesses$name), as.character(new_restaurants$businesses$image_url), as.logical(new_restaurants$businesses$is_closed), as.character(new_restaurants$businesses$url), as.numeric(new_restaurants$businesses$review_count), as.numeric(new_restaurants$businesses$rating), as.numeric(new_restaurants$businesses$coordinates$latitude), as.numeric(new_restaurants$businesses$coordinates$longitude), as.character(new_restaurants$businesses$transactions), as.character(new_restaurants$businesses$price), as.numeric(new_restaurants$businesses$distance), as.character(new_restaurants$businesses$location$address1), as.character(new_restaurants$businesses$location$city), as.character(new_restaurants$businesses$location$state), as.numeric(new_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(new_restaurants_df) <- varnames for (j in 1:ncol(new_restaurants_df)) { new_restaurants_df$full_address[j] <- paste0(flatten(new_restaurants$businesses$location$display_address[j]), sep = ", ", collapse = "") new_restaurants_df$categories[j] <- paste0(flatten(new_restaurants$businesses$categories[[j]]), sep = ", ", collapse = "") } restaurants_df <- rbind(restaurants_df, new_restaurants_df) } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./Queens_Dunkin.csv", na = "NA")
nyc_restaurants <- business_search(api_key = key, location = 'Bronx', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } for (i in 1:19) { varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") offset_val <- i * 50 new_restaurants <- business_search(api_key = key, location = 'Bronx', term = "Dunkin'", limit = 50, offset = offset_val) new_restaurants_df <- data.frame(cbind(as.character(new_restaurants$businesses$id), as.character(new_restaurants$businesses$alias), as.character(new_restaurants$businesses$name), as.character(new_restaurants$businesses$image_url), as.logical(new_restaurants$businesses$is_closed), as.character(new_restaurants$businesses$url), as.numeric(new_restaurants$businesses$review_count), as.numeric(new_restaurants$businesses$rating), as.numeric(new_restaurants$businesses$coordinates$latitude), as.numeric(new_restaurants$businesses$coordinates$longitude), as.character(new_restaurants$businesses$transactions), as.character(new_restaurants$businesses$price), as.numeric(new_restaurants$businesses$distance), as.character(new_restaurants$businesses$location$address1), as.character(new_restaurants$businesses$location$city), as.character(new_restaurants$businesses$location$state), as.numeric(new_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(new_restaurants_df) <- varnames for (j in 1:ncol(new_restaurants_df)) { new_restaurants_df$full_address[j] <- paste0(flatten(new_restaurants$businesses$location$display_address[j]), sep = ", ", collapse = "") new_restaurants_df$categories[j] <- paste0(flatten(new_restaurants$businesses$categories[[j]]), sep = ", ", collapse = "") } restaurants_df <- rbind(restaurants_df, new_restaurants_df) } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./Bronx_Dunkin.csv", na = "NA")
nyc_restaurants <- business_search(api_key = key, location = 'Staten Island', term = "Dunkin'", limit = 50) varnames <- c("id", "alias", "name", "image_url", "is_closed", "url", "review_count", "rating", "latitude", "longitude", "transactions", "price", "distance", "street_address", "city", "state", "zip_code") restaurants_df <- data.frame(cbind(as.character(nyc_restaurants$businesses$id), as.character(nyc_restaurants$businesses$alias), as.character(nyc_restaurants$businesses$name), as.character(nyc_restaurants$businesses$image_url), as.logical(nyc_restaurants$businesses$is_closed), as.character(nyc_restaurants$businesses$url), as.numeric(nyc_restaurants$businesses$review_count), as.numeric(nyc_restaurants$businesses$rating), as.numeric(nyc_restaurants$businesses$coordinates$latitude), as.numeric(nyc_restaurants$businesses$coordinates$longitude), as.character(nyc_restaurants$businesses$transactions), as.character(nyc_restaurants$businesses$price), as.numeric(nyc_restaurants$businesses$distance), as.character(nyc_restaurants$businesses$location$address1), as.character(nyc_restaurants$businesses$location$city), as.character(nyc_restaurants$businesses$location$state), as.numeric(nyc_restaurants$businesses$location$zip_code)), stringsAsFactors = FALSE) colnames(restaurants_df) <- varnames # rest_cats <- data.frame(unlist(nyc_restaurants$businesses$categories[[1]])) #restaurants_df$categories <- nyc_restaurants$businesses$categories[[1]] for (i in 1:ncol(restaurants_df)) { restaurants_df$categories[i] <- paste0(flatten(nyc_restaurants$businesses$categories[[i]]), sep = ", ", collapse = "") restaurants_df$full_address[i] <- paste0(flatten(nyc_restaurants$businesses$location$display_address[i]), sep = ", ", collapse = "") } restaurants_df_backup <- restaurants_df write_csv(restaurants_df, "./StatenIsland_Dunkin.csv", na = "NA")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.