half_t_kernel | R Documentation |
Full blocked Gibbs kernel for half-t priors
half_t_kernel( X, X_transpose, y, a0 = 1, b0 = 1, std_MH = 0.8, xi_current, sigma2_current, beta_current, eta_current, approximate_algo_delta, nrepeats_eta = 1, verbose = FALSE, xi_fixed = FALSE, sigma2_fixed = FALSE, t_dist_df, xi_interval )
X |
n by p matrix |
X_transpose |
Pre-calculated transpose of X |
y |
length n vector |
a0 |
positive scalar |
b0 |
positive scalar |
std_MH |
standard deviation of log-normal MH proposal |
xi_current |
current xi value (positive scalar) |
sigma2_current |
current sigma2 value (positive scalar) |
beta_current |
current beta value (vector of length p) |
eta_current |
current eta value (vector of length p) |
approximate_algo_delta |
approximate MCMC error (non-negative scalar) |
nrepeats_eta |
number of slice sampling steps |
verbose |
boolean for printing/ not printing run time |
xi_fixed |
boolean for fixing / not fixing xi |
sigma2_fixed |
boolean for fixing / not fixing sigma2 |
t_dist_df |
degree of freedom v for Half-t(v). Take v >=1. |
xi_interval |
support of prior distribution of xi |
(beta, eta, sigma2, xi) sampled from the half-t prior blocked Gibbs kernel
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.